Tools for Transportation Resilience Planning in the Green Mountain State

ACEC/NHDOT 2016 Technical Exchange Conference, Concord, NH | April 7, 2016

Fitzgerald Environmental Associates, LLC.

Applied Watershed Science & Ecology

Team Organization

VERMONT AGENCY OF TRANSPORTATION

Community Development Municipalities

PROJECT MANAGER

Roy Schiff, Ph.D., P.E. Milone & MacBroom

Evan Fitzgerald, M.S., CPESC Fitzgerald Environmental Associates

> Lucy E. Gibson, P.E. DuBois & King

Lauren E. Padilla, Ph.D., EIT Stone Environmental

> Norman Marshall Smart Mobility

TECHNICAL ADVISORS

James MacBroom, P.E. Anthony Ciriello Jr., P.E. *Milone & MacBroom*

Project Team

Joe Vermont Agency of Transportation

Roy Milone & MacBroom

Evan Fitzgerald Environmental

Norm Smart Mobility

Lucy Dubois & King

Lauren Stone Environmental

Need for Transportation Resiliency

Deposition Money Brook, Route 100 in Plymouth, VT 10/6/2013 Photo taken by M. Tucker

Resilience in Vermont Needs a Unique Approach

- Relationship between Rivers and Roadways
- Flood recovery a major expense for Vermont

Deposition

Erosion

Route 4 - Killington

Route 4 - Mendon

Goal: Develop Flood Risk Methods and Tools

- Systematically identify high risk road segments and crossing structures
- Incorporate vulnerability and risk into planning process

Definitions

- <u>Vulnerability</u> The extent that a transportation asset is exposed to a threat from inundation, erosion, or deposition.
- Probability The likelihood that a threat will damage a transportation asset.
- <u>Consequence</u> The effect of the disruption to mobility due to damage to a transportation asset.
- <u>Risk</u> The combination of the probability of vulnerability and consequence of damage.

Work Flow & Deliverables

Vulnerability Assessment

$$Vulnerability = \sum_{I,E,D} V_{ROAD \ SEGMENT} = \sum_{I,E,D} (V_{EMBANKMENT} + V_{BRIDGES} + V_{CULVERTS})$$
where I = inundation, E = erosion and D = deposition

 $VI_{ROAD SEGMENT} = VI_{EMBANKMENT} + VI_{BRIDGES} + VI_{CULVERTS}$ $VE_{ROAD SEGMENT} = VE_{EMBANKMENT} + VE_{BRIDGES} + VE_{CULVERTS}$ $VD_{ROAD SEGMENT} = VD_{EMBANKMENT} + VD_{BRIDGES} + VD_{CULVERTS}$

- VI = Predicted vulnerability due to inundation; Lane or road closures likely with potential for temporary failure.
- VE = Predicted vulnerability due to erosion; Closures possible, with temporary or complete failure likely.
- VD = Predicted vulnerability due to deposition; Closures possible, with temporary or complete failure likely.

Transportation Failures

.

Failure Mode	Influence	Damage Distance	Vulnerability Type	
Partial Closure	Single lane closure, reduced capacity	100 feet or less	Inundation (Erosion	
	with some allowable travel, <24 hours		and Deposition	
			possible)	
Full Closure	Multi-lane closure, detour required,	100s of feet	Inundation, Erosion,	
	24 hours to several days		or Deposition	
Temporary Failure	Partial destruction of facility. Several	100s to 1,000s of	Inundation, Erosion,	
	days to a 1 week for recovery.	feet	or Deposition	
Complete Failure	Complete destruction of facility. 1	Varies	Erosion or Deposition	
	week to months for recovery.			

Money Brook, Route 100 in Plymouth, VT 1973 Photo taken by M. Tucker

Mendon Brook US 4 in Mendon, VT 9/1/2011 Photo taken by J. Louisos

Winooski River Cochran Road in Richmond, VT 8/29/2011 Photo taken by Shem Roose Photography

C Shem Roose

Great Brook Brook Road in Plainfield, VT 7/19/2015 Photo taken by B. Towbin

Great Brook Brook Road in Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Great Brook Brook Road in Plainfield, VT 5/26/2011 Photo taken by G. Springston Great Brook Brook Road in Plainfield, VT 5/27/2011 Photo taken by G. Springston

Great Brook Creamery Street in Plainfield, VT 5/27/2011 Photo taken by G. Springston

> Great Brook Brook Road in Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Inundation Vulnerability Screen – VTrans Methods and Tools for Transportation Resilience Planning

March 3, 2016

VULNERABILITY DUE TO INUNDATION	HIGH	MODERATE	LOW

More detailed variables

Documented Past Damages due to Inundation	Present					Absent	Data Replacement
River-Roadway Relief or Structure-Roadway Relief (feet)	< 5		5-:	10		> 10	None
Incision Ratio and Entrenchment Ratio	IR<1.2; ER>5	IR=1.2-1.4; ER>5	IR<1.4; ER=3-5	IR<1.4; ER<3	IR <u>></u> 1.4; ER>3	IR <u>></u> 1.4; ER<3	•
FEMA 100-Year Flood Depth Above Road (feet)	>2		0-	-2		0	
Length of Road in FEMA 100-Year Floodplain (detailed study) (feet)	h of Road in FEMA 100-Year Floodplain (detailed study) (feet) >200 50-200			0-50			
Structure Hydraulic Capacity for Design Flow (Hw/D)	>1.2		1.0-	-1.2		<1.0	
Less detailed variables (to replace more detailed variables when they do not exist)							

Less detailed variables (to replace more detailed variables when they do not exist)

Valley Slope	<0.5		0.5-1.5		>1.5	
Approximate FEMA (Zone A) or SSURGO-Derived Floodplains	Present				Absent	
Length of Road in Approximate FEMA or SSURGO Floodplains (feet)	>200		50-200		0-50	4
Structure Width vs. Bankfull Channel Width	<25%	25-50%	50-75%	>75%	<u>></u> 100%	4

VULNERABILITY DUE TO INUNDATION	HIGH	MODERATE	LOW

Transportation Modeling of Criticality

Road Segment Statistics

Layer	Number of Road Segments
2010 Statewide Model	5,500
TransRoad	75,000
TransRoad less Class 4, private roads, trails, & misc.	53,000
TransRoad usable segments plus centroid connectors	54,000
2015 TransRoad Statewide Model	21,000

Study Watersheds: Upper White River

Study Watersheds: Upper White River

2938 road segments (includes Class 4 & private roads)

Risk Assessment

Mitigation Planning

Develop Mitigation Options

- Infrastructure Improvements (Revised alternatives analysis and design standards)
- River Management
- Alternative Routes
- Roadway Relocation
- Conservation
- Land Use Regulation

Why have an App?

- Centralizes data for all users
 - Ensures everyone has latest version
- No commercial software requirements for users
 - Nothing to install or license
- Maximizes accessibility

- Simplifies complex data queries to answer technical questions for users/stakeholders
- Provides efficiencies over desktop GIS
 - Makes connections between datasets that would otherwise be cumbersome
- Structures/guides workflow to help users better understand the full risk picture

Primary Users

- VTrans (Strategic Planner, Bridge Engineer, Asset Manager, Hydraulic Engineer)
- VTDEC (River Management Engineer, Floodplain Manager, River Scientist)
- RPC (Regional Planner, Transportation Planner, staff)
- VTDEMHS (Hazard Mitigation Planner, Hazard Mitigation Grant Program Project Coordinator, Emergency Operation Center Watchstander)

Co-beneficiary Users

- VTrans (District Manager, District Tech, Project Manager)
- VTACCD (Economic Development Specialist , Community Planner)
- Municipal Official (State Support Function 1, Planner, emergency management, Road Foreman)
- VTDEMHS (Emergency Operation Center GIS Analyst)
- Researcher (Academia, Agency, NGO, Private)
- Consultant (Planner, Engineer)

VERMONT Transportation Flood Resilience

Database Development & Management

- Microsoft SQL Server geospatial database
- Container for source and derived datasets
 - watershed attributes
 - road segment/river reach data
 - site analysis
- Backend for the App
- Generalized schema for extension to additional watersheds
- Eventually administered by VTrans
- Will provide procedures, tools and training to VTrans to update/add data

Thank you.

Joe Segale - joe.segale@vermont.gov Roy Schiff - roys@miloneandmacbroom.com Lauren Padilla - lpadilla@stone-env.com Evan Fitzgerald – evan@fitzgeraldenvironmental.com Norm Marshall – nmarshall@smartmobility.com Lucy Gibson – lgibson@dubois-king.com

ACEC/NHDOT 2016 Technical Exchange Conference, Concord, NH | April 7, 2016

Fitzgerald Environmental Associates, LLC.

Applied Watershed Science & Ecology

