

Use of Tracer Dyes to Understand Fractured Bedrock Flow during a Pumping Test

2015 NGWA Conference on Groundwater in Fractured Rock
Presenter: Bette Nowack, PE, Stone Environmental
Co-Authors: Andrew Fuller, PG, NHDES
Robin Mongeon, PE, NHDES
Owen Friend-Gray, PE, Tighe & Bond

Savage Municipal Water Supply Superfund Site Milford, NH - Background

PCE contamination in overburden aquifer

- DNAPL present in overburden
- 1991 ROD addressed overburden

Previous remedial actions

- Slurry wall
- Pump and treat
- ISCO with NaMnO₄

Highest levels of remaining contamination are in bedrock

- Up to 100 ppm PCE in fractures beneath site
- At depths of more than 500 ft below bedrock surface

Purpose of Tracer Dye Use during Pumping Test

Part of a Remedial Investigation (RI) to *characterize bedrock* at the site

Gain a better understanding of *migration pathways* through fractured bedrock

Qualitatively evaluate relative *flow rates* through fractured bedrock

Evaluate potential *risks to residential wells* located north of the site.

Google Earth Air Photo of Site and Vicinity

Historical 1990 PCE Overburden Plume

Site Geology

Overburden

- Milford Souhegan glacial drift
- Highly transmissive
- 60 to 110 ft thick
- Water table at 5 to 15 ft bgs
- Hydraulic gradients toward the east

Bedrock

- Granite & Gneiss
- Steeply dipping fractures
- Predominant north-northeast strike orientation
- Hydraulic gradients toward the east.

Bedrock Hydrogeology

25 gpm Pump & Treat Operating (baseline condition for pumping test)

Bedrock Fracture Strikes and Dips

Borehole geophysics courtesy of Northeast Geophysical

Rose diagram

 Based on 671 measurements in 7 boreholes

Predominant fracture strike

• North/northeast

Predominant fracture dip angle

• 40 to 80 degrees from horizontal

STONE ENVIRONMENTAL

Gradients vs. Predominant Fracture Orientation

🗲 STONE ENVIRONMENTAL

Historical 1990 PCE Overburden Plume

Deep Bedrock PCE Plume (greater than 150ft below bedrock surface – in green)

🗲 STONE ENVIRONMENTAL

Pumping Test

Pumping well (BR-6) 600 ft deep, 500 ft open borehole in rock

9.5 gallons per minute sustained yield

10-day (228-hour) duration

7 frac tanks/~130,000 gallons

Water level monitoring in 37 bedrock and overburden wells

Heat pulse flow meter (HPFM) monitoring in 11 bedrock wells

USGS Single Borehole Dilution Testing (SBDT) in 7 wells

Drawdown at end of Pumping Test

Dye Selection

Requirements

- Fluoresce at distinct characteristic wavelengths
- Non-toxic
- Low detection limits
- No interference with USGS SBDT

Dyes Selected:

- Fluorecein 2 lbs / 2.5 gal
- Eosin 1 lbs / 2.5 gal
- Rhodamine WT 128 fl oz
- Tinopal 1 lbs / 2.5 gal

Suppliers

- Crawford Hydrology
- Cole-Parmer

Calculation of Mass of Dye to Inject

Estimated distribution area/volume

- Thickness = length of open boreholes (~400 ft)
- Length = distance between injection well and pumping well
- Width = assumed to be 1/3 of Length

Assumed porosity of bedrock = 0.02 (conservatively high estimate)

Assumed dyes would be evenly distributed throughout distribution area

Mass of Dye Injected into Each Well

Dye Injection Well	Distance from Pumping Well (ft)	Approximate Open Borehole Length (ft)	Estimated Distribution Area Bedrock Volume (ft ³)	Type of Dye Injected	Mass of Dye Injected (Ibs)	Predicted Concentration of Dye at Pumping Well (ug/L)	Detection Limit of Dye (ug/L)
BR-2	270	400	4,860,000	Eosin	1.00	165	0.010
BR-3	230	400	3,526,667	Rhodamine WT	0.21	48	0.006
BR-12	720	400	34,560,000	Fluoroscein	2.00	93	0.002
MW-2R	630	400	26,460,000	Tinopal	1.00	31	0.010

Opti-Sciences GFL-1a Fluorometer

Surprises, Interferences, and Uncertainties

24 hours into the pumping test, $NaMnO_4$ from ISCO in the overburden was drawn into pumping well

- NaMnO₄ destroys Tinopal instantaneously
- NaMnO₄ reacts with other dyes, slowly decreasing concentrations
- Length of time dyes reacted with permanganate in subsurface was unknown.

Rhodamine WT decayed in samples overnight and a portion fluoresced at Eosine wavelength

Tracer Dye Results

Tracer Dye Results

🗲 STONE ENVIRONMENTAL

Shapiro Conceptual Model

Shapiro Conceptual Model

Summary of Results

Dye Injection Well	Dye Injected	Peak Concentration of Dye Detected at Pumping Well (ug/L)	Hours into Pumping Test when Dye First Detected	Observed Rate of Travel during Pumping Test (ft/hr)	Direction of Flow	Notes
BR-2	Eosin	4.73	87	3.10	Approx. 80° Off Predominant Strike Orientation	Detection of Eosin may have been delayed, and detected concentrations decreased, by reaction with permanganate.
BR-3	Rhodamine	10.58	20	11.50	Along Predominant Strike Orientation	Detection of Rhodamine may have been delayed, and detected concentrations decreased, by reaction with permanganate.
BR-12	Fluoroscein	1.01	97	7.42	Approx. 40° Off Predominant Strike Orientation	Detection of Fluoroscein may have been delayed, and detected concentrations decreased, by reaction with permanganate.
MW-2R	Tinopal	0.00	Not Detected	N/A	Along Predominant Strike Orientation	Permanganate drawn down from overburden during pumping test reacted with, and destroyed, Tinopal.

Dye Travel Rates and Borehole Flow Rates

TRAVEL

87 HR TRAVEL TIME

PW-2R

PW-12R

TIME

Travel rate from **BR-3 to BR-6** was **3.7** times faster than from **BR-2 to BR-6**

Borehole flow in **BR-3** was **3.9** times higher than in **BR-2**

Higher borehole flow rate seems to correlate with faster dye travel rate

97 HR

TRAVEL

\ MW-16R

TIME

10

BR-2/BR-3 Fracture Orientations & Transmissivities

Monitoring Well	Sample Interval (ft btoc)	Dip Direction/Angle	Transmissivity (ft²/day)	Monitoring Well	Sample Interval (ft btoc)	Dip Direction/Angle	Transmissivity (ft²/day)
BR-2	158-169 ft	W 50°	0.006		133-144 ft	SE 75°	0.113
	189-200 ft	SE 75°	0.006		174-185 ft	SSW 39°	0.019
	215 226 ft	SE 900	0.000		212-223 ft	NW 75°	0.080
	215-22011	SE 60°	0.162		267-278 ft	WNW 75°	0.033
	256-267 ft	SE 55°	3.427	BR-3	330-341 ft	SW 59°	0.040
	285-296 ft	ESE 65°	3.795		348-359 ft	NW 77º/NW 55º/W	0.215
					350-361 ft	47º/SSE 76º/SSE 58º	0.043
	339-350 ft	NW 30°	0.012		374-385 ft	SE 72°	0.020
	387-398 ft	NW 80°	0.314		475-486 ft	E 61º/W 88º/SW 45º	0.020

Conclusions

Bedrock groundwater flow direction and dye transport rates were strongly influenced by the fracture fabric of the bedrock.

Bedrock *anisotropy* was observed in:

- Interconnections between monitoring wells
- Elongated *drawdown* during pumping test
- Predominant *fracture strike* orientation in borehole geophysics.
- Tracer dye *transport rates*.

Tracer dyes traveled *fastest along* predominant fracture *strike* alignment. The *greater the angular off-set, the slower* the travel rate.

Borehole flow rates correlated with the tracer dye travel rates, i.e. the *more flow through* the *borehole*, the *faster the dye travel rate* from the well.

Tracer dye *breakthrough curves* generally followed Shapiro's conceptual model for summation of transport along *multiple pathways* in fractured rock.

Thank you.

Contacts: <u>bnowack@stone-env.com</u> <u>andrew.fuller@des.nh.gov</u> <u>robin.mongeon@des.nh.gov</u> <u>ofriend-gray@tighebond.con</u>