EFFECTIVENESS OF PHYSICAL BARRIERS AS A COMPONENT OF REMEDIAL SYSTEMS AT 4 SITES IN NEW HAMPSHIRE

2010 DCHWS Conference USEPA-USACE Design & Construction Issues at Hazardous Waste Sites

Bette Nowack, Stone Environmental, Inc. Fred McGarry, NHDES Robin Mongeon, NHDES Scott Hilton, NHDES

4 NH SITES EVALUATED

- Site 1 Slurry Wall and Cap, LNAPL
- Site 2 Sheet Pile
 Wall, No Cap, DNAPL
- Site 3 Slurry Wall, No Cap, DNAPL
- Site 4 Partial Sheet
 Pile Wall, NAPL

This air photo is subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

- Bentonite slurry wall
- × 3-4 ft wide
- × 4,000 ft long
- × 90 100 ft deep
- × 20-acre area
- × 40 mil HDPE cap

- GW extraction from 14 wells
- Wall & cap installed 1982, P&T started 1986
- SVE from 66 wells started in 1993
- Pump & Treat, SVE ended 1996

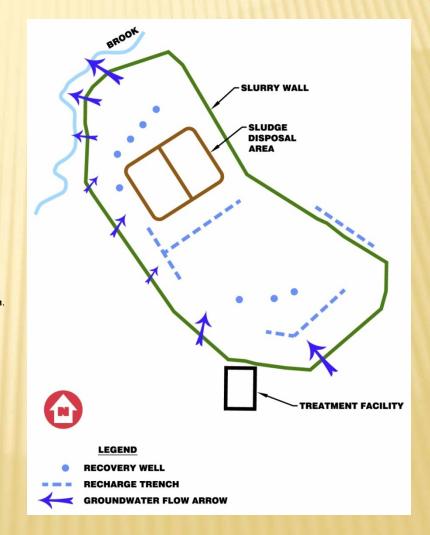
Sylvester Site, Nashua, New Hampshire		
Contaminant (16 total)	ACL (ppb)	AGQS (ppb)
Vinyl chloride	95	2
Benzene	340	5
Chloroform	1505	6
1,1,2 trichloroethane	3 ^B	5
Tetrachloroethylene	57	5
Trichloroethylene	1500	5
Methyl ethyl ketone	8000	170
Chlorobenzene	110	100
Methylene chloride	12250	5
Toluene	2900	1000
1,1 dichloroethane	81 ^B	81
Trans-1,2 dichloroethane	1800	15
1,1,1 trichloroethane	200	200
Methyl methacrylate	350	No standard
Selenium	2.6	50
Phenols	400	4000

Table notes:

^A ACLs established in 1983 SROD, September 21, 1983 for attainment within groundwater inside the slurry wall, no cleanup levels were established for outside the slurry wall.

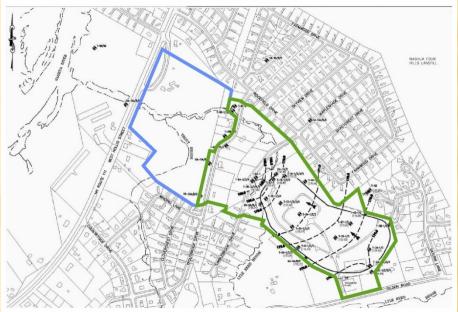
^B The cleanup level for 1,1,2 trichloroethane and 1,1 dichloroethane were changed from 1.7 and 1.5 ppb, respectively, to 3 and 81 ppb, respectively, in a September 23, 2002 Explanation of Significant Differences.

- Objective: prevent migration of contaminants from site
- Cleanup goals inside wall were ACLs
- No Cleanup levels established for outside wall
- Risk assessment justified shutdown of remediation



SITE 1 REMEDIAL SYSTEM

This air photo is subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

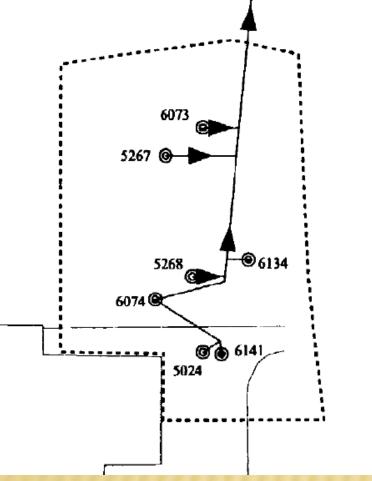

- 30,000 to 50,000 gpd leakage through fractured bedrock
- 300 gpm extracted
- 250 gpm reinjected inside wall
- 50 gpm discharged outside wall

SITE 1 – CURRENT STATUS

- 4th 5-Year Review
 conducted in 2009
- Remedy currently is protective
- In the long-term, not protective

Adapted from Environmental Sample Collection – Feb/Mar 2009, Nobis Engineering, 2009

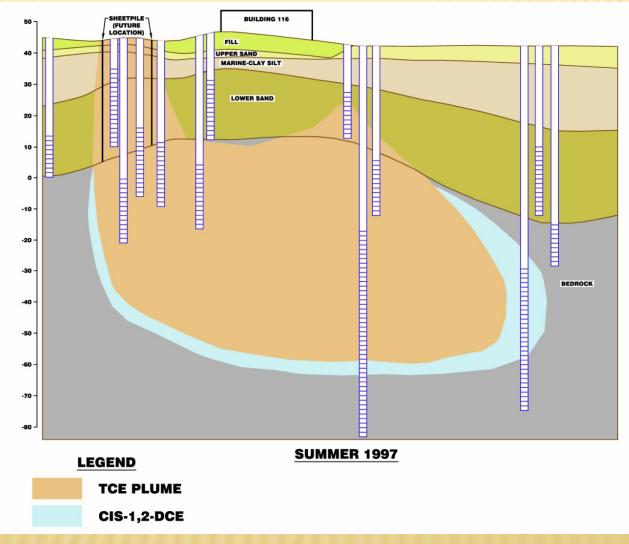
- **5-Year Review Recommendations:**
 - Expand GMZ due to 1,4-Dioxane , Pb, As plume
 - Perform Vapor Intrusion Study
 - Evaluate effectiveness of cap & slurry wall



- Former location
 of TCE UST with
 overflow pipe
- Technical
 Impracticability
 Site
- Sheet pile wall,
 no cap, encloses
 1/3 acre

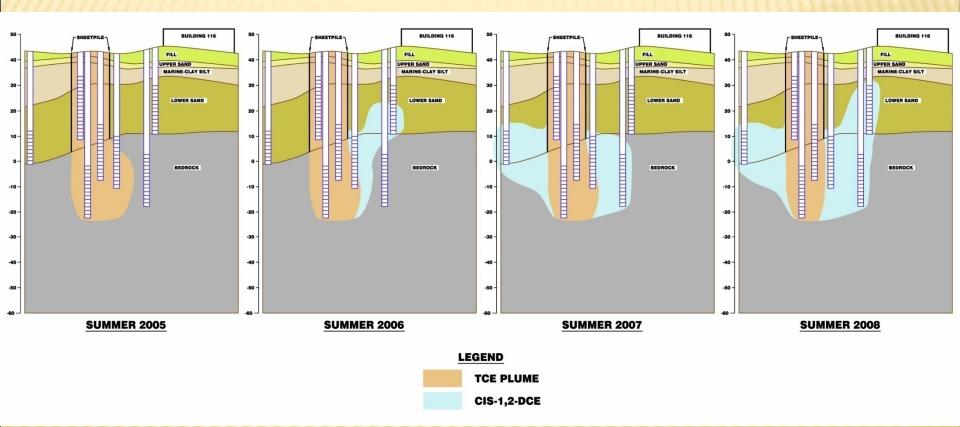
This air photo is subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

Wall installed Nov 1996, P & T began Feb 1997



Source: Zone 3 1999 Annual Report, Pease AFB, NH, Bechtel, 1999

- Objective: Isolate source area where attainment of MCLs was "Technically Impractical"
- 7 extraction wells, 3
 overburden, 4 bedrock
- Total pumping rate in 2001 was 6.9 gpm
- Extraction rate declined to 0.9 gpm by 2008


SITE 2 CROSS-SECTION PRE-WALL

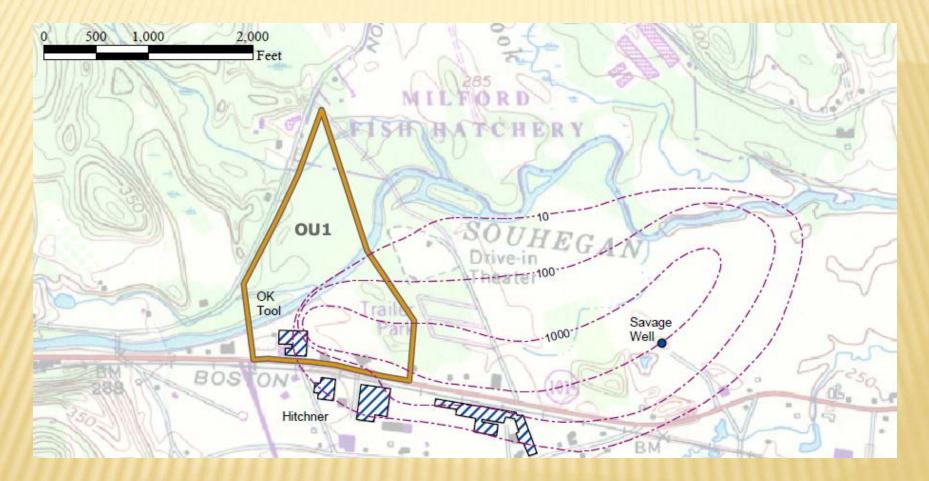
Adapted from Zone 3 2008 Annual Report, Former Pease AFB, URS, 2009

SITE 2 – CROSS-SECTIONS

Current status:

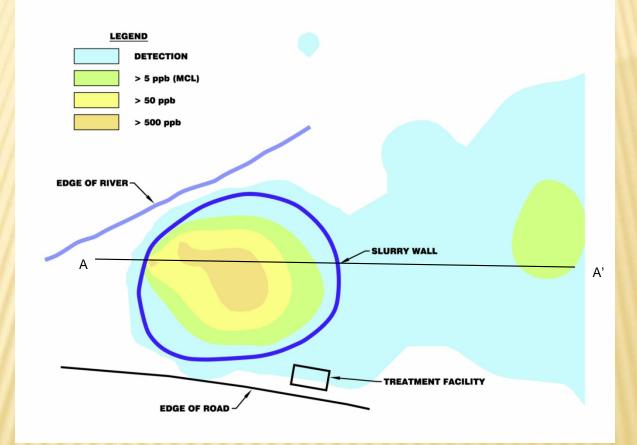
Adapted from Zone 3 2008 Annual Report, Former Pease AFB, URS, 2009

- Decreased capacity from extraction wells
- Bedrock plume of cis-1,2-DCE is expanding

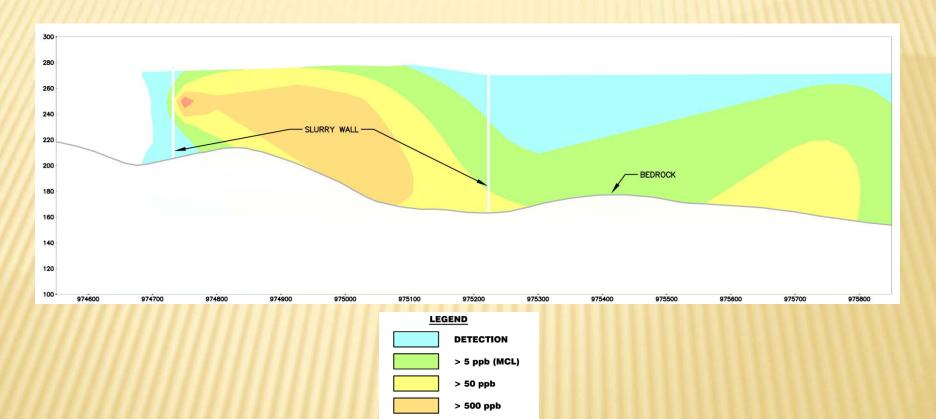


This air photo is subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

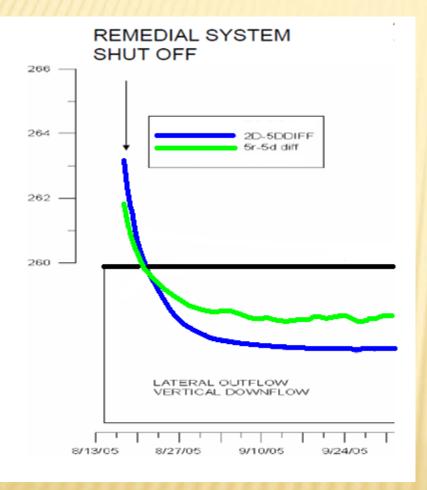
- Objective: Containment more cost effective than P&T alone for DNAPL
- × Soil-bentonite slurry wall
- × Encloses 5-acres
- 3-ft min wall thickness,
 50 to 115 ft deep
- × No surface cap
- Wall construction 1998, P&T started 1999
- Two interior wells, pumping at 14 to 60 gpm
- Discharge to exterior recharge gallery


SITE 3 - BEFORE WALL

6,000 ft long VOC plume before wall construction


SITE 3 – SITE PLAN AFTER WALL

Plume outside wall reduced to below MCLs in shallow overburden in OU1 after 10 years.


SITE 3 – CROSS-SECTION AFTER WALL

Plume slightly exceeds MCLs in deep overburden outside wall in OU1 after 10 years.

SITE 3 - GRADIENTS

Immediately after
 shutdown of extraction
 wells, groundwater
 gradients reverse

 With sufficient pumping rate, gradients are upward and inward

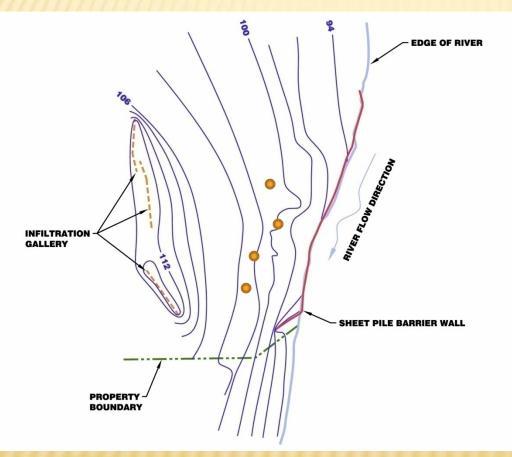
 Without pumping, gradients are downward and outward

Adapted from USGS, 2008

SITE 3 - CURRENT STATUS

Locations of new bedrock wells

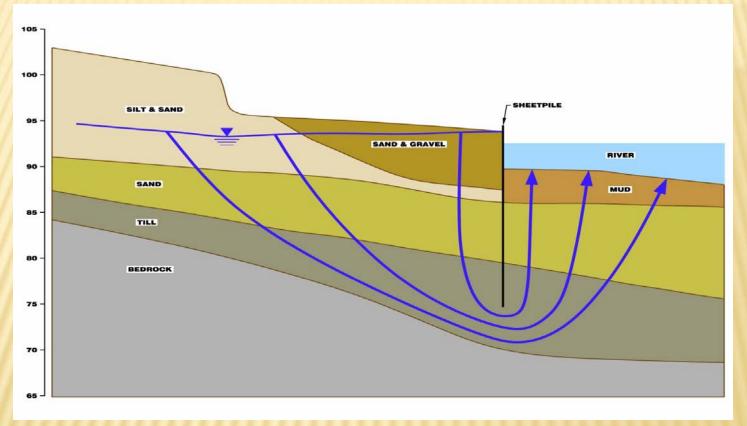
- A deep bedrock wells installed
- PCE as high as 8 ppm observed in deep bedrock beneath wall
- Further investigations in bedrock are planned
- Ongoing ISCO program in overburden inside wall



These air photos are subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

- Creosote/fuel oil (NAPL)
- GW & NAPL extraction
 & treatment 1986 to
 1997
- Sheet pile barrier system & product
 recovery wells
 constructed along
 750 ft of river
 shoreline in 1997

SITE 4 - SITE PLAN



- × 4 recovery wells
- 3 infiltration galleries,
 500 ft long combined
- Original capacity was 30 gpm
- Current capacity is 20 gpm
- Pumping rates limited by infiltration gallery capacity

Adapted from Letter Plan: Proposed System Refinements, GW Mgmt Permit, Key Environmental, Inc., 2009

SITE 4 – CROSS-SECTION



Adapted from Response to NHDES Comments, Key Environmental, Inc., 2008

- Floating NAPL observed in river
- NAPL has been observed in till
- NAPL migrating through till beneath wall?

SITE 4 – CURRENT STATUS

This air photo is subject to Microsoft's Terms of Service, and Microsoft is the owner of rights therein.

- Pumping rates limited by infiltration gallery capacity, resulting in periodic overtopping of wall
- × Floating NAPL in river
- NAPL migrating through till beneath wall
- Infiltration galleries need expansion

OBSERVATIONS

- Barrier walls did not completely contain contaminants and did not completely stop contaminant migration.
- In most cases, contaminants were well contained in overburden, but flow beneath wall was typical.
- Containment was more effective, if hydraulic control was achieved.
 - + Capping to limit infiltration
 - + Effective groundwater extraction/reinjection

LESSONS LEARNED

- Understanding site hydrogeology is extremely important
 It will change after wall is constructed.
- × Important considerations:
 - + Type of contaminant (LNAPL vs DNAPL)
 - + Continuity of confining layers underlying site
- Maintaining preferred hydraulic gradients is critical to preventing leakage.
- × Keep wells and recharge galleries well maintained.