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% Exposure Modeling
"w Recommendations from NAS Report

" The National Academy of Science (NAS) report recognized that a
step-wise approach to estimating pesticide exposure will be needed.

" Exposure models applied at Steps 2 and 3 will require:

— Use of best available “authoritative” geospatial datasets
— Estimates of spatial-temporal variations
— Accounting for uncertainty in determining probabilistic exposure estimates

" The NAS reported identified that currently used pesticide aquatic
exposure models do not provide information at the watershed scale.

" The Soil and Water Assessment Tool (SWAT) was identified by NAS
as a suitable tool to model watershed scale aquatic exposure
estimates which vary over spatially and temporally.



s Case Study: Insecticide Exposure
Sy Assessment for the Delta Smelt

" Objective: To estimate
spatially variable pesticide
exposure distributions across
the Delta Smelt (DS) Critical
Habitat.

" Approach: Apply the SWAT
model for a watershed scale
assessment that:

— Is relevant to specific species
habitat

— Utilizes best available spatial
datasets

— Accounts for uncertainties in
model inputs Legend

[ | DS Critical Habitat

— Provides probabilistic exposure
|:| Full Watershed Extent

estimates for use in risk

characterization



Q Model Development: Spatial
Delineation of Watershed

[ .

" A large, diverse watershed
drains through CA Delta.

® \Watershed delineated into 344
sub-basins, 59 within DS
Critical Habitat.

" Pesticide applied upstream of
Critical Habitat is routed
downstream.
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% Best Available Spatial Data for
“aw Landscape Characterization

" Topography: 30-m NHDPlus
V2

" Land Use Data: Cropland
Data Layer (CDL)

" Soils Data: Soil Survey
Geographic database,
1:24,000 scale

" Heterogeneilty In
landscape characteristics
Impacting pesticide
transport is represented.




% Best Available Data for Long Term
Climate Characterization

[ .

" 30 years of daily data
between 1981-2010

— 51 temperature stations

— 48 precipitation stations with
most complete records
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“amw Best Available Hydrologic Data

" Complex hydrologic system
throughout the Central Valley
was accounted for in the SWAT

model:

— Flow diversions
— Flood control structures

— Pumping plants
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Q Calibration and Validation of Model
" With Observed Data

® Streamflow was calibrated at 13 locations within the watershed.

® Spatial and temporal variability in flow was well captured by the
model, leading to improved pesticide concentration estimates.
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“aw Pesticide Applications: Spatial

Accounting for Uncertainty in

" | ocations and amounts of
pesticide applied can vary
from year to year.

" Each year of pesticide use
Is assumed to have an
equal probability of
occurring.

" The annual pesticide use
In a single subbasin can
be met by many different
combinations of field
applications.
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“aw Pesticide Applications: Temporal

Accounting for Uncertainty in

® Probability distributions of
application timing are
determined for each crop
from PUR database.

" Probability of ground and
aerial application methods
calculated for each crop.
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Q Accounting for Uncertainty in
Pesticide Applications: Spray Drift

I

| -

B At the watershed scale, the g
. .
potential for exposure due , y 4 ,
Higher Drifit Lower Drift

to spray drift is highly RN il
. Contribution Contribution
variable.

" From a geospatial iU

perspective, dependencies
include:

— Location and size of treated area
within a subbasin

— The proximity of treated area to a
receiving water body.

" Each potentially treated area
has a different maximum drift

contribution.
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— Model Simulations of
Spatially Explicit EEC Distributions

" A Monte Carlo simulation
approach was used to generate
100 30-year simulations
accounting for uncertainty in:

— Percent Treated Area (total applied)
— Spatial location of treated areas

— Timing of applications

— Method of application

® EEC distributions were
generated for each of 59 water
within the Critical Habitat.

" Comparisons made with
monitoring data showed good
agreement.
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= Use of Spatially Explicit EEC
“aw Distributions in Risk Characterization
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“am' Summary and Conclusions

® Recommendations from the NAS report were incorporated
Into an endangered species exposure assessment that
required analysis as the watershed scale.

" The modeling approach incorporated:

— Best available “authoritative” geospatial datasets
— Uncertainty in several key inputs associated with pesticide applications
— Observed flow and chemical data for model calibration/validation

" The probabilistic exposure modeling results have been used in the
assessment's risk characterization through integration with
probabilistic species sensitivity distributions.

" The approach presented can be adapted to additional species
habitats and expanded to include additional uncertainties.
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