Probabilistic Co-Occurrence Report for Atrazine and 10 Endangered Species

Stone Environmental

Table of Contents

  1. Pesticide Use Modeling
    1. Methods
    2. Results
    3. Atrazine Applications on Corn
  2. Species Distribution Modeling
    1. Methods
    2. Results
      1. Aphelocoma coerulescens
      2. Bombus affinis
      3. Bufo houstonensis
      4. Chamaesyce garberi
      5. Cicindela puritana
      6. Eurycea tonkawae
      7. Lycaeides melissa samuelis
      8. Neonympha mitchellii mitchellii
      9. Pedicularis furbishiae
      10. Tympanuchus cupido attwateri
  3. Co-Occurrence Modeling
    1. Methods
    2. Results
      1. Aphelocoma coerulescens and Atrazine Applications on Corn
      2. Bombus affinis and Atrazine Applications on Corn
      3. Bufo houstonensis and Atrazine Applications on Corn
      4. Chamaesyce garberi and Atrazine Applications on Corn
      5. Cicindela puritana and Atrazine Applications on Corn
      6. Eurycea tonkawae and Atrazine Applications on Corn
      7. Lycaeides melissa samuelis and Atrazine Applications on Corn
      8. Neonympha mitchellii mitchellii and Atrazine Applications on Corn
      9. Pedicularis furbishiae and Atrazine Applications on Corn
      10. Tympanuchus cupido attwateri and Atrazine Applications on Corn
  4. Summary
  5. References

Foreword

 In response to the need for efficient production of advanced geospatial analyses of co-occurrence between pesticide use and species of interest as required by the Endangered Species Act, Stone Environmental, with the support of Syngenta Crop Protection, developed the Automated Probabilistic Co-Occurrence Assessment Tool (APCOAT)[1] in early 2022. APCOAT is designed to produce probabilistic spatial models of both pesticide use and species distributions, and combine the models for co-occurrence assessments. Each of the models may also be run independently. The pesticide use models are represented by probabilistic crop footprints[2] and statistical measures of the Percent Crop Treated (PCT) derived from freely available pesticide usage data[3], or from pesticide usage data provided by the user. The species distribution models (SDMs) are produced using maximum entropy methods[4] analyzing the statistical fit between species presence location records and geographic predictor rasters for environmental variables[5]. Probabilistic co-occurrence between pesticide usage and species distributions is calculated by multiplying the two model output rasters. For planning and conservation purposes, the co-occurrence statistics may be summarized by state, crop reporting district, county, or watershed.

 This case study is a compilation of co-occurrence reports between atrazine use on corn and 10 endangered species, generated in February 2022 using APCOAT. In these assessments the probabilistic pesticide use estimates are represented by probabilistic crop footprints and estimates atrazine use on corn for years 2012 - 2017 at the state level. Probabilities of crop presence are calculated at 30m resolution based on the fraction of years the crop is present from 2015 - 2020 in the Cropland Data Layer (CDL)[6], and adjusted by estimates of crop mapping accuracy[7] and crop production[8] using Bayesian inference. The PCT statistics applied to the probabilistic crop footprints assume that atrazine is applied at the maximum permitted rate of 2 lb/ac per year[9]. Probabilistic species distribution models are produced based on the statistical fit between species presence records and geographic environmental predictor variable datasets: monthly solar radiation[10], bioclimatic variables derived from precipitation and temperature[10], elevation[10], and land use/land cover[11]. Co-occurrence between probabilistic pesticide use and probabilistic species distributions is calculated by multiplying the probabilistic pesticide use footprint by the probabilistic species distribution model, and is summarized at the HUC8 scale.



1. Pesticide Use Modeling From ePest

1.1 Pesticide Use Modeling Methods

 APCOAT pesticide use footprints are generated by first using pesticide use and crop acreage data to create region-specific rasters of the percent crop treated (PCT) for the pesticide of interest. The PCT rasters are then multiplied by probabilistic crop footprint rasters[2] that are included in the software package. The PCT rasters are created by first calculating an annual time series of the maximum potential annual usage in a region. Maximum annual usage is calculated by multiplying the regional crop acreage measured from CDL for 2012 - 2017 years by the specified application rates (Table 1). Regional pesticide usage data is then divided by the maximum potential usage in each year to generate an annual PCT time series for each region. Finally, a user-specified statistic is calculated from these regional time series' and converted to raster format.

Table 1. Modeling parameters for calculations of probabilistic usage of atrazine.

Crop corn
Application rate (lb/ac) 2.50
Data source ePest
Data source resolution state
Summary statistic maximum

1.2 Pesticide Use Modeling Results

 The pesticide use modeling results consists of the following figure and table for each crop modeled:


1.3 Pesticide Use Modeling Results for Corn.


Figure 1. Probabilistic use footprint for atrazine applications on corn.

Table 2. Percent crop treated statistics for corn in the continental US, 2012 - 2017, from ePest data.
State State_FIPS Minimum 10th Percentile 25th Percentile Median 75th Percentile 90th Percentile Maximum Selected Statistic: Maximum
Alabama 1 41.8% 41.8% 54.3% 54.7% 55.6% 62.1% 62.1% 62.1%
Arizona 4 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%
Arkansas 5 46.4% 46.6% 47.2% 58.1% 61.5% 68.6% 68.6% 68.6%
California 6 0.8% 0.8% 1.1% 1.2% 1.4% 1.6% 1.6% 1.6%
Colorado 8 11.6% 14.1% 18.4% 19.7% 22.3% 23.8% 24.1% 24.1%
Connecticut 9 0.8% 0.8% 8.3% 10.7% 15.1% 19.1% 19.1% 19.1%
Delaware 10 17.9% 17.9% 26.0% 38.6% 43.7% 50.6% 50.6% 50.6%
Florida 12 21.1% 21.1% 29.0% 37.8% 66.2% 68.1% 68.1% 68.1%
Georgia 13 55.2% 55.2% 65.8% 67.6% 71.4% 86.0% 90.2% 90.2%
Idaho 16 0.0% 0.0% 1.9% 2.1% 3.7% 17.9% 55.9% 55.9%
Illinois 17 34.2% 34.2% 34.3% 34.8% 36.9% 37.0% 37.0% 37.0%
Indiana 18 30.3% 30.3% 31.2% 34.5% 37.3% 39.9% 39.9% 39.9%
Iowa 19 20.6% 20.6% 20.7% 23.2% 26.4% 26.6% 26.6% 26.6%
Kansas 20 37.8% 37.8% 40.4% 44.7% 47.9% 49.4% 49.4% 49.4%
Kentucky 21 31.8% 31.8% 37.2% 43.2% 44.7% 53.8% 54.3% 54.3%
Louisiana 22 52.7% 52.7% 61.8% 72.0% 79.9% 80.1% 80.1% 80.1%
Maine 23 7.6% 7.6% 17.7% 21.6% 25.0% 25.5% 25.5% 25.5%
Maryland 24 27.1% 27.1% 36.1% 43.9% 47.0% 47.3% 47.8% 47.8%
Massachusetts 25 4.2% 4.2% 5.8% 8.6% 10.6% 19.8% 19.8% 19.8%
Michigan 26 16.4% 16.5% 18.6% 19.5% 20.0% 28.6% 28.6% 28.6%
Minnesota 27 3.1% 3.1% 3.4% 5.2% 7.1% 7.6% 7.6% 7.6%
Mississippi 28 15.9% 15.9% 40.9% 44.3% 57.3% 68.1% 68.1% 68.1%
Missouri 29 48.7% 48.7% 51.6% 59.3% 60.6% 64.1% 64.1% 64.1%
Montana 30 3.5% 3.5% 5.4% 12.0% 14.0% 17.6% 17.7% 17.7%
Nebraska 31 21.5% 21.5% 23.4% 26.4% 30.5% 30.7% 30.7% 30.7%
Nevada 32 2.3% 2.4% 3.2% 43.3% 100.0% 100.0% 100.0% 100.0%
New Hampshire 33 8.3% 8.3% 8.3% 10.5% 15.8% 19.6% 19.6% 19.6%
New Jersey 34 9.7% 9.7% 17.6% 20.1% 27.0% 27.5% 27.5% 27.5%
New Mexico 35 1.9% 3.0% 4.5% 7.8% 17.0% 17.7% 17.8% 17.8%
New York 36 15.4% 16.0% 16.4% 18.3% 20.2% 24.1% 24.1% 24.1%
North Carolina 37 28.0% 28.5% 33.8% 42.0% 51.4% 53.9% 54.3% 54.3%
North Dakota 38 4.7% 5.9% 8.6% 9.4% 13.1% 13.7% 14.7% 14.7%
Ohio 39 34.7% 34.7% 36.7% 39.7% 41.7% 42.4% 42.4% 42.4%
Oklahoma 40 31.3% 38.0% 42.3% 56.9% 84.1% 84.7% 85.8% 85.8%
Oregon 41 1.3% 1.4% 2.6% 6.9% 17.7% 32.5% 33.6% 33.6%
Pennsylvania 42 28.4% 28.5% 29.0% 29.6% 42.8% 46.4% 46.4% 46.4%
Rhode Island 44 3.8% 3.8% 6.2% 7.5% 8.1% 11.1% 11.1% 11.1%
South Carolina 45 39.6% 39.6% 44.5% 61.2% 61.7% 75.6% 75.6% 75.6%
South Dakota 46 10.0% 10.3% 11.0% 11.5% 12.8% 15.1% 15.2% 15.2%
Tennessee 47 30.1% 30.1% 32.1% 43.6% 47.1% 54.3% 54.3% 54.3%
Texas 48 23.2% 23.6% 25.6% 30.9% 32.4% 34.4% 35.6% 35.6%
Utah 49 4.2% 4.5% 4.7% 9.3% 20.0% 34.6% 41.2% 41.2%
Vermont 50 8.1% 8.1% 8.8% 17.2% 23.4% 30.6% 30.6% 30.6%
Virginia 51 33.1% 33.1% 43.1% 44.8% 60.6% 68.9% 68.9% 68.9%
Washington 53 0.8% 1.2% 1.5% 4.7% 6.8% 13.4% 14.8% 14.8%
West Virginia 54 12.3% 12.3% 24.6% 27.1% 34.6% 37.1% 37.1% 37.1%
Wisconsin 55 11.9% 11.9% 12.8% 13.8% 14.2% 15.0% 15.0% 15.0%
Wyoming 56 0.3% 0.4% 0.5% 6.7% 10.3% 12.1% 14.5% 14.5%



2. Species Distribution Modeling

2.1 Species Distribution Modeling Methods

 APCOAT uses Maxent software[4] to compare species location records to environmental variables and locate areas of similar habitat suitability as the basis for generating Species Distribution Models. Specifically, Maxent uses presence-only species records to "minimize the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space"[5] and generate probabilistic models. Since the probabilistic models vary slightly with each solution, APCOAT generates 5 models at a time and evaluates the average of the 5 models iteratively. Iterative evaluation of the averaged models follows a set of best practice methods to select the best-fit model that uses the fewest predictor variables and mizimizes correlation among these predictors[12]. Eighty percent of the species location records are used in the initial model training iterations, and the remaining twenty percent of species location records are used for evaluation of the final model. In this case study environmental conditions were modeled using solar radiation[10], bioclimatic (Table 3[10]), elevation [10], and land use/land cover data[11]. Species location data were provided by NatureServe[13].

Table 3. Reference table for WorldClim bioclimatic variables
Bioclim1 = Annual Mean Temperature
Bioclim2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
Bioclim3 = Isothermality ((BIO2/BIO7) x100)
Bioclim4 = Temperature Seasonality (standard deviation x100)
Bioclim5 = Max Temperature of Warmest Month
Bioclim6 = Min Temperature of Coldest Month
Bioclim7 = Temperature Annual Range (BIO5-BIO6)
Bioclim8 = Mean Temperature of Wettest Quarter
Bioclim9 = Mean Temperature of Driest Quarter
Bioclim10 = Mean Temperature of Warmest Quarter
Bioclim11 = Mean Temperature of Coldest Quarter
Bioclim12 = Annual Precipitation
Bioclim13 = Precipitation of Wettest Month
Bioclim14 = Precipitation of Driest Month
Bioclim15 = Precipitation Seasonality (Coefficient of Variation)
Bioclim16 = Precipitation of Wettest Quarter
Bioclim17 = Precipitation of Driest Quarter
Bioclim18 = Precipitation of Warmest Quarter
Bioclim19 = Precipitation of Coldest Quarter

2.2 Species Distribution Modeling Results

  2.2.1 Aphelocoma coerulescens
  2.2.2 Bombus affinis
  2.2.3 Bufo houstonensis
  2.2.4 Chamaesyce garberi
  2.2.5 Cicindela puritana
  2.2.6 Eurycea tonkawae
  2.2.7 Lycaeides melissa samuelis
  2.2.8 Neonympha mitchellii mitchellii
  2.2.9 Pedicularis furbishiae
  2.2.10 Tympanuchus cupido attwateri

2.2.1 Species Distribution Modeling - Aphelocoma coerulescens
 The species distribution modeling results consist of the following figures and tables:

Table 4. Input parameters for species distribution modeling of Aphelocoma coerulescens.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 3
Final SDM iteration number 2



Figure 2. Extent of the species range modeled for Aphelocoma coerulescens. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 3. Correlation between SDM predictor variables for Aphelocoma coerulescens.


Figure 4. Boxplots of model fit for each iteration of Aphelocoma coerulescens distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.
Table 5. Diagnostic statistics of the training data used in SDM iteration #2 for Aphelocoma coerulescens.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 366.0000 366.0000 366.0000 366.0000 366.0000 366.00000 0.000000
Regularized training gain 1.3791 1.3543 1.3560 1.3420 1.3729 1.36086 0.015000
Unregularized training gain 1.5379 1.5178 1.5242 1.4934 1.5448 1.52362 0.020000
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9201 0.9170 0.9179 0.9160 0.9199 0.91818 0.001794
Number of background points 10366.0000 10366.0000 10366.0000 10366.0000 10366.0000 10366.00000 0.000000
Bioclim 04 contribution 63.6355 60.6916 59.8011 62.1869 58.7740 61.01782 1.926172
Bioclim 09 contribution 7.8460 7.6063 9.0431 8.5832 9.6500 8.54572 0.842666
Bioclim 18 contribution 9.0072 10.0333 9.4937 9.6685 10.2729 9.69512 0.490588
Elevation contribution 2.3956 4.3426 6.9860 4.8445 6.6677 5.04728 1.867719
Solar AUG contribution 7.3713 6.8350 6.4292 6.1879 5.3225 6.42918 0.764074
Solar MAY contribution 3.5868 3.2547 2.2148 2.8420 2.8497 2.94960 0.514927
USGS_LULC contribution 6.1576 7.2365 6.0322 5.6870 6.4631 6.31528 0.585284
Bioclim 04 permutation importance 55.6743 56.7567 54.1867 58.2692 55.7245 56.12228 1.509730
Bioclim 09 permutation importance 10.6227 8.9739 9.9152 9.4705 11.0400 10.00446 0.838108
Bioclim 18 permutation importance 9.3591 10.5840 10.2554 9.2666 8.6269 9.61840 0.792500
Elevation permutation importance 4.5521 4.6590 5.6523 6.1083 6.5994 5.51422 0.895362
Solar AUG permutation importance 9.0185 9.5995 9.7463 9.0314 9.0723 9.29360 0.350683
Solar MAY permutation importance 8.2525 7.9646 8.6451 6.5616 7.0622 7.69720 0.861857
USGS_LULC permutation importance 2.5207 1.4623 1.5988 1.2925 1.8748 1.74982 0.480753
Entropy 7.8722 7.8953 7.8974 7.9091 7.8771 7.89022 0.015253
Prevalence average probability of presence over background sites 0.1486 0.1523 0.1528 0.1545 0.1495 0.15154 0.002436
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0432 0.0458 0.0450 0.0439 0.0423 0.04404 0.001394
Fixed cumulative value 1 area 0.4233 0.4347 0.4289 0.4336 0.4272 0.42954 0.004689
Fixed cumulative value 1 training omission 0.0109 0.0109 0.0109 0.0109 0.0109 0.01090 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.1398 0.1390 0.1445 0.1431 0.1391 0.14110 0.002533
Fixed cumulative value 5 area 0.3121 0.3217 0.3177 0.3211 0.3146 0.31744 0.004129
Fixed cumulative value 5 training omission 0.0219 0.0273 0.0246 0.0219 0.0219 0.02352 0.002415
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.2204 0.2197 0.2305 0.2274 0.2223 0.22406 0.004694
Fixed cumulative value 10 area 0.2473 0.2557 0.2543 0.2568 0.2501 0.25284 0.004006
Fixed cumulative value 10 training omission 0.0574 0.0546 0.0601 0.0574 0.0546 0.05682 0.002307
Minimum training presence cumulative threshold 0.4422 0.4600 0.4852 0.4354 0.3445 0.43346 0.053328
Minimum training presence Cloglog threshold 0.0184 0.0207 0.0205 0.0193 0.0146 0.01870 0.002475
Minimum training presence area 0.4693 0.4776 0.4706 0.4815 0.4864 0.47708 0.007232
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 14.8925 14.0133 14.2228 14.4048 13.9952 14.30572 0.368421
X10 percentile training presence Cloglog threshold 0.2883 0.2754 0.2852 0.2864 0.2777 0.28260 0.005691
X10 percentile training presence area 0.2049 0.2191 0.2174 0.2178 0.2149 0.21482 0.005750
X10 percentile training presence training omission 0.0984 0.0984 0.0984 0.0984 0.0984 0.09840 0.000000
Equal training sensitivity and specificity cumulative threshold 22.3147 21.3585 21.9267 22.1846 22.2077 21.99844 0.385076
Equal training sensitivity and specificity Cloglog threshold 0.3743 0.3629 0.3697 0.3761 0.3736 0.37132 0.005255
Equal training sensitivity and specificity area 0.1585 0.1694 0.1667 0.1668 0.1617 0.16462 0.004413
Equal training sensitivity and specificity training omission 0.1585 0.1694 0.1667 0.1667 0.1612 0.16450 0.004488
Maximum training sensitivity plus specificity cumulative threshold 11.9250 11.6949 11.5643 12.4347 11.1152 11.74682 0.484737
Maximum training sensitivity plus specificity Cloglog threshold 0.2473 0.2430 0.2528 0.2605 0.2405 0.24882 0.008026
Maximum training sensitivity plus specificity area 0.2290 0.2391 0.2395 0.2339 0.2394 0.23618 0.004655
Maximum training sensitivity plus specificity training omission 0.0683 0.0628 0.0656 0.0738 0.0628 0.06666 0.004599
Balance training omission predicted area and threshold value cumulative threshold 2.3046 3.0250 2.2744 2.5288 2.1897 2.46450 0.337460
Balance training omission predicted area and threshold value Cloglog threshold 0.0815 0.0972 0.0813 0.0901 0.0770 0.08542 0.008123
Balance training omission predicted area and threshold value area 0.3706 0.3629 0.3774 0.3739 0.3769 0.37234 0.005937
Balance training omission predicted area and threshold value training omission 0.0109 0.0109 0.0109 0.0109 0.0109 0.01090 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 9.4531 9.7024 9.4882 9.4583 9.5992 9.54024 0.108152
Equate entropy of thresholded and original distributions Cloglog threshold 0.2113 0.2153 0.2224 0.2195 0.2144 0.21658 0.004378
Equate entropy of thresholded and original distributions area 0.2530 0.2589 0.2595 0.2625 0.2543 0.25764 0.003916
Equate entropy of thresholded and original distributions training omission 0.0464 0.0519 0.0546 0.0574 0.0519 0.05244 0.004072



Figure 5. Sampling of continuous predictor variables retained in the best-fit Aphelocoma coerulescens distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 6. Sampling of discrete predictor variables retained in the best-fit Aphelocoma coerulescens distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 7. Percent contribution of each variable to best-fit species distribution models for Aphelocoma coerulescens. Values sum to 1.0.
Table 6. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Aphelocoma coerulescens, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.912021 0.911543 0.912766 0.91516 0.914096 0.913117 0.001076


Figure 8. Final mean SDM output for Aphelocoma coerulescens.


2.2.2 Species Distribution Modeling Results - Bombus affinis
 The species distribution modeling results consist of the following figures and tables:

Table 7. Input parameters for species distribution modeling of Bombus affinis.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 3
Final SDM iteration number 2



Figure 9. Extent of the species range modeled for Bombus affinis. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 10. Correlation between SDM predictor variables for Bombus affinis.


Figure 11. Boxplots of model fit for each iteration of Bombus affinis distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 8. Diagnostic statistics of the training data used in SDM iteration #2 for Bombus affinis.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 482.0000 482.0000 482.0000 482.0000 482.0000 482.00000 0.000000
Regularized training gain 1.5694 1.5323 1.5550 1.5731 1.5673 1.55942 0.016612
Unregularized training gain 1.7028 1.6640 1.6844 1.7079 1.6979 1.69140 0.017637
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9316 0.9291 0.9307 0.9319 0.9316 0.93098 0.001143
Number of background points 10482.0000 10482.0000 10482.0000 10482.0000 10482.0000 10482.00000 0.000000
Bioclim 02 contribution 3.4019 3.4588 4.2127 3.1648 3.7208 3.59180 0.399449
Bioclim 17 contribution 9.6448 10.1532 10.9534 9.5237 11.0522 10.26546 0.714187
Elevation contribution 9.8351 7.7513 11.7720 14.5770 10.4620 10.87948 2.525806
Solar SEP contribution 44.0121 44.6700 41.0784 36.8036 44.4008 42.19298 3.339424
USGS_LULC contribution 33.1060 33.9666 31.9835 35.9310 30.3642 33.07026 2.091192
Bioclim 02 permutation importance 7.7642 6.6776 6.7047 7.1052 8.4193 7.33420 0.748695
Bioclim 17 permutation importance 9.4948 9.7107 8.3938 9.1045 10.8761 9.51598 0.910617
Elevation permutation importance 4.6518 4.0538 5.6120 6.4124 5.6717 5.28034 0.927926
Solar SEP permutation importance 68.0149 69.2487 68.0498 66.6316 66.0383 67.59666 1.271743
USGS_LULC permutation importance 10.0744 10.3091 11.2397 10.7462 8.9947 10.27282 0.841609
Entropy 7.6861 7.7266 7.7078 7.6899 7.6927 7.70062 0.016696
Prevalence average probability of presence over background sites 0.1177 0.1228 0.1205 0.1182 0.1186 0.11956 0.002098
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0166 0.0175 0.0182 0.0165 0.0176 0.01728 0.000719
Fixed cumulative value 1 area 0.5230 0.5337 0.5210 0.5300 0.5204 0.52562 0.005915
Fixed cumulative value 1 training omission 0.0021 0.0021 0.0021 0.0021 0.0021 0.00210 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0712 0.0731 0.0737 0.0724 0.0738 0.07284 0.001074
Fixed cumulative value 5 area 0.3096 0.3226 0.3148 0.3148 0.3131 0.31498 0.004759
Fixed cumulative value 5 training omission 0.0353 0.0353 0.0373 0.0353 0.0332 0.03528 0.001450
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1413 0.1435 0.1462 0.1394 0.1411 0.14230 0.002622
Fixed cumulative value 10 area 0.2127 0.2238 0.2188 0.2165 0.2172 0.21780 0.004033
Fixed cumulative value 10 training omission 0.0664 0.0685 0.0685 0.0643 0.0685 0.06724 0.001878
Minimum training presence cumulative threshold 0.4555 0.4662 0.5989 0.4525 0.5387 0.50236 0.064479
Minimum training presence Cloglog threshold 0.0084 0.0091 0.0111 0.0082 0.0101 0.00938 0.001215
Minimum training presence area 0.6172 0.6228 0.5798 0.6257 0.5908 0.60726 0.020648
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 14.3467 15.6674 14.9150 15.4622 14.3757 14.95340 0.606624
X10 percentile training presence Cloglog threshold 0.2173 0.2348 0.2304 0.2318 0.2181 0.22648 0.008176
X10 percentile training presence area 0.1660 0.1645 0.1680 0.1596 0.1699 0.16560 0.003925
X10 percentile training presence training omission 0.0996 0.0996 0.0996 0.0996 0.0996 0.09960 0.000000
Equal training sensitivity and specificity cumulative threshold 19.7729 20.7749 20.7442 20.1557 20.0090 20.29134 0.448834
Equal training sensitivity and specificity Cloglog threshold 0.3088 0.3154 0.3163 0.3147 0.3046 0.31196 0.005058
Equal training sensitivity and specificity area 0.1286 0.1300 0.1286 0.1286 0.1307 0.12930 0.000990
Equal training sensitivity and specificity training omission 0.1286 0.1307 0.1286 0.1286 0.1307 0.12944 0.001150
Maximum training sensitivity plus specificity cumulative threshold 20.3764 20.7582 21.5525 20.1557 22.1775 21.00406 0.844374
Maximum training sensitivity plus specificity Cloglog threshold 0.3181 0.3154 0.3296 0.3147 0.3420 0.32396 0.011733
Maximum training sensitivity plus specificity area 0.1252 0.1300 0.1242 0.1286 0.1192 0.12544 0.004222
Maximum training sensitivity plus specificity training omission 0.1286 0.1286 0.1307 0.1266 0.1390 0.13070 0.004861
Balance training omission predicted area and threshold value cumulative threshold 2.1122 2.8113 2.2573 2.3783 2.6306 2.43794 0.282316
Balance training omission predicted area and threshold value Cloglog threshold 0.0328 0.0443 0.0363 0.0360 0.0409 0.03806 0.004528
Balance training omission predicted area and threshold value area 0.4274 0.4024 0.4220 0.4169 0.3996 0.41366 0.012179
Balance training omission predicted area and threshold value training omission 0.0104 0.0166 0.0104 0.0124 0.0124 0.01244 0.002531
Equate entropy of thresholded and original distributions cumulative threshold 10.3831 10.5621 10.5054 10.5972 10.6189 10.53334 0.094311
Equate entropy of thresholded and original distributions Cloglog threshold 0.1471 0.1534 0.1559 0.1482 0.1517 0.15126 0.003639
Equate entropy of thresholded and original distributions area 0.2077 0.2163 0.2123 0.2085 0.2091 0.21078 0.003546
Equate entropy of thresholded and original distributions training omission 0.0705 0.0726 0.0705 0.0705 0.0726 0.07134 0.001150



Figure 12. Sampling of continuous predictor variables retained in the best-fit Bombus affinis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 13. Sampling of discrete predictor variables retained in the best-fit Bombus affinis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 14. Percent contribution of each variable to best-fit species distribution models for Bombus affinis. Values sum to 1.0.
Table 9. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Bombus affinis, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.93959 0.939713 0.941598 0.940984 0.94123 0.940623 0.000411


Figure 15. Final mean SDM output for Bombus affinis.

2.2.3 Species Distribution Modeling Results for Bufo houstonensis
 The species distribution modeling results consist of the following figures and tables:

Table 10. Input parameters for species distribution modeling of Bufo houstonensis.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 4
Final SDM iteration number 3





Figure 16. Extent of the species range modeled for Bufo houstonensis. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 17. Correlation between SDM predictor variables for Bufo houstonensis.


Figure 18. Boxplots of model fit for each iteration of Bufo houstonensis distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 11. Diagnostic statistics of the training data used in SDM iteration #3 for Bufo houstonensis.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 22.0000 22.0000 22.0000 22.0000 22.0000 22.00000 0.000000
Regularized training gain 1.5429 1.6155 1.5428 1.6138 1.5289 1.56878 0.042263
Unregularized training gain 2.1446 2.2561 2.1545 2.2348 2.1389 2.18578 0.055272
Iterations 400.0000 500.0000 420.0000 420.0000 420.0000 432.00000 38.987177
Training AUC 0.9612 0.9651 0.9592 0.9644 0.9604 0.96206 0.002569
Number of background points 10021.0000 10016.0000 10020.0000 10021.0000 10022.0000 10020.00000 2.345208
Bioclim 11 contribution 30.2334 32.0528 29.2680 30.4041 30.5948 30.51062 1.002211
Bioclim 17 contribution 47.4778 49.0326 49.0516 48.3420 47.4080 48.26240 0.801245
USGS_LULC contribution 22.2888 18.9146 21.6805 21.2538 21.9973 21.22700 1.348551
Bioclim 11 permutation importance 45.9006 31.8002 31.1550 32.9369 38.8273 36.12400 6.253670
Bioclim 17 permutation importance 48.2827 65.2166 58.7453 59.2480 52.0999 56.71850 6.618500
USGS_LULC permutation importance 5.8167 2.9832 10.0997 7.8151 9.0728 7.15750 2.827538
Entropy 7.6672 7.5941 7.6703 7.5981 7.6831 7.64256 0.042852
Prevalence average probability of presence over background sites 0.1235 0.1153 0.1241 0.1151 0.1256 0.12072 0.005097
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0194 0.0187 0.0199 0.0188 0.0203 0.01942 0.000691
Fixed cumulative value 1 area 0.4446 0.4093 0.4396 0.4203 0.4392 0.43060 0.015089
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0975 0.1027 0.0958 0.0945 0.1000 0.09810 0.003293
Fixed cumulative value 5 area 0.2662 0.2415 0.2609 0.2506 0.2660 0.25704 0.010748
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1955 0.2054 0.2014 0.1978 0.2094 0.20190 0.005624
Fixed cumulative value 10 area 0.1964 0.1796 0.1918 0.1850 0.1979 0.19014 0.007741
Fixed cumulative value 10 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Minimum training presence cumulative threshold 14.3492 13.5305 12.9116 14.1465 13.5961 13.70678 0.566059
Minimum training presence Cloglog threshold 0.2750 0.2776 0.2624 0.2698 0.2727 0.27150 0.005844
Minimum training presence area 0.1613 0.1540 0.1680 0.1538 0.1695 0.16132 0.007444
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 22.0619 28.9459 21.1269 20.8289 20.9710 22.78692 3.476556
X10 percentile training presence Cloglog threshold 0.3941 0.4930 0.3992 0.3704 0.3743 0.40620 0.050072
X10 percentile training presence area 0.1206 0.0909 0.1247 0.1196 0.1287 0.11690 0.014975
X10 percentile training presence training omission 0.0909 0.0909 0.0909 0.0909 0.0909 0.09090 0.000000
Equal training sensitivity and specificity cumulative threshold 22.0619 28.9117 21.1507 20.8289 20.9926 22.78916 3.455763
Equal training sensitivity and specificity Cloglog threshold 0.3941 0.4930 0.3994 0.3704 0.3743 0.40624 0.050065
Equal training sensitivity and specificity area 0.1206 0.0910 0.1247 0.1196 0.1287 0.11692 0.014932
Equal training sensitivity and specificity training omission 0.1364 0.0909 0.1364 0.1364 0.1364 0.12730 0.020348
Maximum training sensitivity plus specificity cumulative threshold 14.3492 13.5305 12.9116 14.1465 13.5961 13.70678 0.566059
Maximum training sensitivity plus specificity Cloglog threshold 0.2750 0.2776 0.2624 0.2698 0.2727 0.27150 0.005844
Maximum training sensitivity plus specificity area 0.1613 0.1540 0.1680 0.1538 0.1695 0.16132 0.007444
Maximum training sensitivity plus specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Balance training omission predicted area and threshold value cumulative threshold 4.2936 3.9502 4.2376 3.9819 4.1939 4.13144 0.155465
Balance training omission predicted area and threshold value Cloglog threshold 0.0817 0.0762 0.0820 0.0764 0.0828 0.07982 0.003239
Balance training omission predicted area and threshold value area 0.2823 0.2638 0.2784 0.2735 0.2844 0.27648 0.008215
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 8.4409 8.0717 7.9470 8.6002 8.2036 8.25268 0.266833
Equate entropy of thresholded and original distributions Cloglog threshold 0.1672 0.1675 0.1602 0.1682 0.1684 0.16630 0.003445
Equate entropy of thresholded and original distributions area 0.2132 0.1983 0.2139 0.1990 0.2166 0.20820 0.008813
Equate entropy of thresholded and original distributions training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000



Figure 19. Sampling of continuous predictor variables retained in the best-fit Bufo houstonensis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 20. Sampling of discrete predictor variables retained in the best-fit Bufo houstonensis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 21. Percent contribution of each variable to best-fit species distribution models for Bufo houstonensis. Values sum to 1.0.
Table 12. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Bufo houstonensis, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.921667 0.92 0.916667 0.923333 0.918333 0.92 0.002846


Figure 22. Final mean SDM output for Bufo houstonensis.


2.2.4 Species Distribution Modeling Results for Chamaesyce garberi
 The species distribution modeling results consist of the following figures and tables:

Table 13. Input parameters for species distribution modeling of Chamaesyce garberi.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 3
Final SDM iteration number 2



Figure 23. Extent of the species range modeled for Chamaesyce garberi. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 24. Correlation between SDM predictor variables for Chamaesyce garberi.


Figure 25. Boxplots of model fit for each iteration of Chamaesyce garberi distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 14. Diagnostic statistics of the training data used in SDM iteration #2 for Chamaesyce garberi.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 24.0000 24.0000 24.0000 24.0000 24.0000 24.00000 0.000000
Regularized training gain 3.7089 4.0232 3.7802 3.9350 3.8405 3.85756 0.124307
Unregularized training gain 4.2563 4.5495 4.2933 4.4887 4.3787 4.39330 0.124982
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9942 0.9951 0.9941 0.9953 0.9944 0.99462 0.000545
Number of background points 10024.0000 10024.0000 10024.0000 10024.0000 10024.0000 10024.00000 0.000000
Bioclim 02 contribution 75.6359 72.1978 76.3608 78.4794 77.3784 76.01046 2.385704
Bioclim 03 contribution 12.1806 12.5614 8.8565 8.5005 8.6382 10.14744 2.038240
Bioclim 13 contribution 2.7805 0.6765 0.2338 2.9228 0.5371 1.43014 1.308456
Bioclim 15 contribution 4.3000 3.6890 2.4780 2.9671 2.4730 3.18142 0.798663
Solar JUN contribution 1.4270 5.5702 5.8307 1.3870 6.1065 4.06428 2.433196
USGS_LULC contribution 3.6760 5.3051 6.2401 5.7433 4.8668 5.16626 0.976721
Bioclim 02 permutation importance 51.3078 30.1871 48.1931 46.0461 48.1650 44.77982 8.370714
Bioclim 03 permutation importance 23.5929 40.1912 25.0939 34.5585 33.3547 31.35824 6.924434
Bioclim 13 permutation importance 0.3283 0.0000 0.0000 0.6659 0.1159 0.22202 0.282034
Bioclim 15 permutation importance 6.8977 4.0358 2.9589 3.8620 2.6365 4.07818 1.682963
Solar JUN permutation importance 13.3291 22.5150 19.6316 11.2105 11.8261 15.70246 5.066694
USGS_LULC permutation importance 4.5442 3.0709 4.1225 3.6569 3.9017 3.85924 0.548338
Entropy 5.5079 5.1900 5.4304 5.2799 5.3705 5.35574 0.124666
Prevalence average probability of presence over background sites 0.0125 0.0090 0.0115 0.0099 0.0108 0.01074 0.001361
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0019 0.0014 0.0018 0.0016 0.0017 0.00168 0.000192
Fixed cumulative value 1 area 0.2772 0.2533 0.2676 0.2573 0.2687 0.26482 0.009557
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0122 0.0097 0.0111 0.0099 0.0102 0.01062 0.001033
Fixed cumulative value 5 area 0.0939 0.0762 0.0896 0.0813 0.0901 0.08622 0.007247
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.0433 0.0386 0.0424 0.0406 0.0385 0.04068 0.002174
Fixed cumulative value 10 area 0.0377 0.0299 0.0353 0.0306 0.0333 0.03336 0.003248
Fixed cumulative value 10 training omission 0.0417 0.0417 0.0417 0.0417 0.0417 0.04170 0.000000
Minimum training presence cumulative threshold 7.7649 6.4834 6.6934 7.9143 6.9917 7.16954 0.639970
Minimum training presence Cloglog threshold 0.0250 0.0159 0.0185 0.0240 0.0177 0.02022 0.004034
Minimum training presence area 0.0544 0.0544 0.0621 0.0436 0.0583 0.05456 0.006910
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 21.6029 19.0153 22.3198 20.6189 21.9350 21.09838 1.324336
X10 percentile training presence Cloglog threshold 0.2521 0.1773 0.2904 0.2371 0.2971 0.25080 0.048227
X10 percentile training presence area 0.0115 0.0106 0.0098 0.0091 0.0094 0.01008 0.000973
X10 percentile training presence training omission 0.0833 0.0833 0.0833 0.0833 0.0833 0.08330 0.000000
Equal training sensitivity and specificity cumulative threshold 9.3439 7.9101 8.9345 8.1685 8.7174 8.61488 0.578815
Equal training sensitivity and specificity Cloglog threshold 0.0368 0.0253 0.0333 0.0252 0.0285 0.02982 0.005108
Equal training sensitivity and specificity area 0.0417 0.0417 0.0417 0.0417 0.0417 0.04170 0.000000
Equal training sensitivity and specificity training omission 0.0417 0.0417 0.0417 0.0417 0.0417 0.04170 0.000000
Maximum training sensitivity plus specificity cumulative threshold 7.7649 18.1811 18.5131 7.9143 15.9971 13.67410 5.413392
Maximum training sensitivity plus specificity Cloglog threshold 0.0250 0.1615 0.1693 0.0240 0.1247 0.10090 0.071749
Maximum training sensitivity plus specificity area 0.0544 0.0114 0.0132 0.0436 0.0154 0.02760 0.019955
Maximum training sensitivity plus specificity training omission 0.0000 0.0417 0.0417 0.0000 0.0417 0.02502 0.022840
Balance training omission predicted area and threshold value cumulative threshold 4.1836 4.0525 4.1698 4.1412 4.2704 4.16350 0.078565
Balance training omission predicted area and threshold value Cloglog threshold 0.0098 0.0071 0.0091 0.0078 0.0085 0.00846 0.001060
Balance training omission predicted area and threshold value area 0.1122 0.0967 0.1085 0.1006 0.1068 0.10496 0.006236
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 13.2955 13.8466 13.3086 13.1406 13.1486 13.34798 0.289692
Equate entropy of thresholded and original distributions Cloglog threshold 0.0833 0.0807 0.0791 0.0753 0.0742 0.07852 0.003774
Equate entropy of thresholded and original distributions area 0.0245 0.0179 0.0227 0.0196 0.0213 0.02120 0.002579
Equate entropy of thresholded and original distributions training omission 0.0417 0.0417 0.0417 0.0417 0.0417 0.04170 0.000000



Figure 26. Sampling of continuous predictor variables retained in the best-fit Chamaesyce garberi distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 27. Sampling of discrete predictor variables retained in the best-fit Chamaesyce garberi distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 28. Percent contribution of each variable to best-fit species distribution models for Chamaesyce garberi. Values sum to 1.0.
Table 15. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Chamaesyce garberi, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.996875 0.995625 0.99625 0.99625 0.99625 0.99625 0


Figure 29. Final mean SDM output for Chamaesyce garberi.


2.2.5 Species Distribution Modeling Results for Cicindela puritana
 The species distribution modeling results consist of the following figures and tables:

Table 16. Input parameters for species distribution modeling of Bombus affinis.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 3
Final SDM iteration number 2




Figure 30. Extent of the species range modeled for Cicindela puritana. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 31. Correlation between SDM predictor variables for Cicindela puritana.


Figure 32. Boxplots of model fit for each iteration of Cicindela puritana distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 17. Diagnostic statistics of the training data used in SDM iteration #2 for Cicindela puritana.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 14.0000 14.0000 14.0000 14.0000 14.0000 14.00000 0.000000
Regularized training gain 2.2708 2.2461 2.3297 2.2305 2.2227 2.25996 0.043097
Unregularized training gain 2.7060 2.6700 2.7845 2.6583 2.6741 2.69858 0.051176
Iterations 200.0000 200.0000 160.0000 160.0000 240.0000 192.00000 33.466401
Training AUC 0.9762 0.9750 0.9764 0.9758 0.9758 0.97584 0.000537
Number of background points 10014.0000 10014.0000 10014.0000 10014.0000 10014.0000 10014.00000 0.000000
Bioclim 13 contribution 8.3690 7.5021 9.3327 8.0313 7.8574 8.21850 0.696914
Bioclim 15 contribution 18.4082 19.7338 17.5497 17.8592 19.1371 18.53760 0.900446
Elevation contribution 37.8710 34.1192 46.2148 40.0823 34.9763 38.65272 4.845325
Solar OCT contribution 14.7525 17.1882 9.1908 14.1645 16.8798 14.43516 3.210637
USGS_LULC contribution 20.5993 21.4566 17.7119 19.8628 21.1494 20.15600 1.494533
Bioclim 13 permutation importance 7.8572 9.2356 6.6306 7.5954 8.3382 7.93140 0.958763
Bioclim 15 permutation importance 28.2208 8.6538 22.9939 20.1363 22.1875 20.43846 7.230556
Elevation permutation importance 61.9849 79.0694 65.7468 68.6667 67.6599 68.62554 6.371688
Solar OCT permutation importance 0.7654 0.6686 1.1132 0.7953 0.8315 0.83480 0.166970
USGS_LULC permutation importance 1.1718 2.3726 3.5155 2.8064 0.9830 2.16986 1.079559
Entropy 6.9410 6.9656 6.8819 6.9813 6.9892 6.95180 0.043192
Prevalence average probability of presence over background sites 0.0583 0.0605 0.0552 0.0610 0.0615 0.05930 0.002597
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0157 0.0162 0.0154 0.0162 0.0180 0.01630 0.001010
Fixed cumulative value 1 area 0.2864 0.2882 0.2768 0.2869 0.2816 0.28398 0.004728
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0706 0.0735 0.0697 0.0744 0.0752 0.07268 0.002408
Fixed cumulative value 5 area 0.1761 0.1812 0.1747 0.1814 0.1791 0.17850 0.003011
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1319 0.1393 0.1264 0.1360 0.1372 0.13416 0.005108
Fixed cumulative value 10 area 0.1274 0.1320 0.1260 0.1315 0.1302 0.12942 0.002616
Fixed cumulative value 10 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Minimum training presence cumulative threshold 14.4581 12.7686 12.3067 14.9498 15.2998 13.95660 1.339370
Minimum training presence Cloglog threshold 0.1815 0.1723 0.1491 0.1891 0.1962 0.17764 0.018260
Minimum training presence area 0.1001 0.1146 0.1108 0.1012 0.0984 0.10502 0.007208
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 21.6107 24.2630 21.4414 20.5209 20.2773 21.62266 1.583372
X10 percentile training presence Cloglog threshold 0.2608 0.2995 0.2494 0.2587 0.2648 0.26664 0.019219
X10 percentile training presence area 0.0704 0.0671 0.0700 0.0770 0.0774 0.07238 0.004583
X10 percentile training presence training omission 0.0714 0.0714 0.0714 0.0714 0.0714 0.07140 0.000000
Equal training sensitivity and specificity cumulative threshold 21.3489 22.8871 21.0319 20.5209 20.2773 21.21322 1.025721
Equal training sensitivity and specificity Cloglog threshold 0.2586 0.2776 0.2457 0.2587 0.2648 0.26108 0.011566
Equal training sensitivity and specificity area 0.0714 0.0714 0.0714 0.0770 0.0774 0.07372 0.003180
Equal training sensitivity and specificity training omission 0.0714 0.0714 0.0714 0.0714 0.0714 0.07140 0.000000
Maximum training sensitivity plus specificity cumulative threshold 14.4581 12.7686 12.3067 14.9498 15.2998 13.95660 1.339370
Maximum training sensitivity plus specificity Cloglog threshold 0.1815 0.1723 0.1491 0.1891 0.1962 0.17764 0.018260
Maximum training sensitivity plus specificity area 0.1001 0.1146 0.1108 0.1012 0.0984 0.10502 0.007208
Maximum training sensitivity plus specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Balance training omission predicted area and threshold value cumulative threshold 2.7718 2.6689 2.5058 2.6335 2.5404 2.62408 0.105961
Balance training omission predicted area and threshold value Cloglog threshold 0.0404 0.0414 0.0382 0.0420 0.0422 0.04084 0.001633
Balance training omission predicted area and threshold value area 0.2173 0.2238 0.2201 0.2247 0.2242 0.22202 0.003204
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 13.8875 14.4479 14.7771 13.7814 13.4360 14.06598 0.538811
Equate entropy of thresholded and original distributions Cloglog threshold 0.1759 0.1894 0.1760 0.1743 0.1754 0.17820 0.006297
Equate entropy of thresholded and original distributions area 0.1032 0.1058 0.0973 0.1074 0.1082 0.10438 0.004395
Equate entropy of thresholded and original distributions training omission 0.0000 0.0714 0.0714 0.0000 0.0000 0.02856 0.039107



Figure 33. Sampling of continuous predictor variables retained in the best-fit Cicindela puritana distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 34. Sampling of discrete predictor variables retained in the best-fit Cicindela puritana distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 35. Percent contribution of each variable to best-fit species distribution models for Cicindela puritana. Values sum to 1.0.
Table 18. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Cicindela puritana, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.9925 0.9925 0.9925 0.995 0.9925 0.993 0.00119


Figure 36. Final mean SDM output for Cicindela puritana.


2.2.6 Species Distribution Modeling Results for Eurycea tonkawae
 The species distribution modeling results consist of the following figures and tables:

Table 19. Input parameters for species distribution modeling of Eurycea tonkawae.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 5
Final SDM iteration number 4



Figure 37. Extent of the species range modeled for Eurycea tonkawae. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 38. Correlation between SDM predictor variables for Eurycea tonkawae.


Figure 39. Boxplots of model fit for each iteration of Eurycea tonkawae distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 20. Diagnostic statistics of the training data used in SDM iteration #4 for Eurycea tonkawae.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 33.0000 33.0000 33.0000 33.0000 33.0000 33.00000 0.000000
Regularized training gain 4.2303 4.2856 4.3286 4.4054 4.2672 4.30342 0.067101
Unregularized training gain 4.7600 4.8274 4.8880 4.9784 4.7857 4.84790 0.087541
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9969 0.9971 0.9973 0.9975 0.9970 0.99716 0.000241
Number of background points 10033.0000 10033.0000 10033.0000 10033.0000 10033.0000 10033.00000 0.000000
Bioclim 02 contribution 25.5542 34.0266 33.3664 32.8510 31.3142 31.42248 3.429627
Bioclim 03 contribution 23.0713 18.3111 19.4127 19.9869 19.7121 20.09882 1.779355
Bioclim 04 contribution 14.7605 11.0262 10.2769 10.8951 12.0286 11.79746 1.771597
Elevation contribution 29.4883 29.3298 29.1463 29.5880 28.6350 29.23748 0.376030
USGS_LULC contribution 7.1256 7.3064 7.7977 6.6789 8.3101 7.44374 0.628674
Bioclim 02 permutation importance 20.8513 22.9147 21.3880 26.4902 51.1133 28.55150 12.802989
Bioclim 03 permutation importance 13.2808 13.8272 13.7653 7.2902 4.9245 10.61760 4.206696
Bioclim 04 permutation importance 4.1629 7.2656 3.0164 5.3111 5.4483 5.04086 1.585698
Elevation permutation importance 61.2411 55.4658 61.2590 60.4737 38.0706 55.30204 9.930423
USGS_LULC permutation importance 0.4640 0.5266 0.5713 0.4348 0.4433 0.48800 0.058807
Entropy 4.9854 4.9305 4.8871 4.8069 4.9549 4.91296 0.069339
Prevalence average probability of presence over background sites 0.0077 0.0073 0.0069 0.0064 0.0074 0.00714 0.000503
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0019 0.0024 0.0018 0.0021 0.0018 0.00200 0.000255
Fixed cumulative value 1 area 0.1047 0.0894 0.1119 0.0915 0.1100 0.10150 0.010453
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0298 0.0294 0.0235 0.0251 0.0249 0.02654 0.002864
Fixed cumulative value 5 area 0.0295 0.0281 0.0314 0.0272 0.0301 0.02926 0.001653
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.0841 0.0832 0.0714 0.0773 0.0817 0.07954 0.005247
Fixed cumulative value 10 area 0.0154 0.0151 0.0159 0.0144 0.0154 0.01524 0.000550
Fixed cumulative value 10 training omission 0.0303 0.0303 0.0303 0.0303 0.0303 0.03030 0.000000
Minimum training presence cumulative threshold 7.1911 7.3582 8.4887 8.3856 7.5680 7.79832 0.599373
Minimum training presence Cloglog threshold 0.0500 0.0554 0.0532 0.0606 0.0514 0.05412 0.004149
Minimum training presence area 0.0214 0.0202 0.0190 0.0171 0.0205 0.01964 0.001659
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 22.2826 21.9492 26.1023 24.0051 24.0215 23.67214 1.661169
X10 percentile training presence Cloglog threshold 0.4060 0.3629 0.4570 0.3305 0.4497 0.40122 0.054668
X10 percentile training presence area 0.0064 0.0062 0.0048 0.0047 0.0055 0.00552 0.000779
X10 percentile training presence training omission 0.0909 0.0909 0.0909 0.0909 0.0909 0.09090 0.000000
Equal training sensitivity and specificity cumulative threshold 7.2267 7.4000 8.4887 8.4367 7.6054 7.83150 0.591877
Equal training sensitivity and specificity Cloglog threshold 0.0506 0.0562 0.0532 0.0607 0.0517 0.05448 0.004064
Equal training sensitivity and specificity area 0.0214 0.0202 0.0190 0.0170 0.0205 0.01962 0.001698
Equal training sensitivity and specificity training omission 0.0303 0.0303 0.0303 0.0303 0.0303 0.03030 0.000000
Maximum training sensitivity plus specificity cumulative threshold 7.1911 7.3582 8.4887 8.3856 7.5680 7.79832 0.599373
Maximum training sensitivity plus specificity Cloglog threshold 0.0500 0.0554 0.0532 0.0606 0.0514 0.05412 0.004149
Maximum training sensitivity plus specificity area 0.0214 0.0202 0.0190 0.0171 0.0205 0.01964 0.001659
Maximum training sensitivity plus specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Balance training omission predicted area and threshold value cumulative threshold 1.9561 1.7456 2.0349 1.7520 2.0096 1.89964 0.140624
Balance training omission predicted area and threshold value Cloglog threshold 0.0058 0.0055 0.0052 0.0049 0.0056 0.00540 0.000354
Balance training omission predicted area and threshold value area 0.0643 0.0615 0.0669 0.0630 0.0643 0.06400 0.001990
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 10.5663 10.9172 11.9114 11.6849 10.9418 11.20432 0.567746
Equate entropy of thresholded and original distributions Cloglog threshold 0.0884 0.0957 0.0966 0.0982 0.0988 0.09554 0.004178
Equate entropy of thresholded and original distributions area 0.0146 0.0138 0.0132 0.0122 0.0141 0.01358 0.000923
Equate entropy of thresholded and original distributions training omission 0.0303 0.0303 0.0303 0.0303 0.0303 0.03030 0.000000



Figure 40. Sampling of continuous predictor variables retained in the best-fit Eurycea tonkawae distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 41. Sampling of discrete predictor variables retained in the best-fit Eurycea tonkawae distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 42. Percent contribution of each variable to best-fit species distribution models for Eurycea tonkawae. Values sum to 1.0.
Table 21. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Eurycea tonkawae, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.9995 1 0.999 1 0.9995 0.9996 0.000411


Figure 43. Final mean SDM output for Eurycea tonkawae.


2.2.7 Species Distribution Modeling Results for Lycaeides melissa samuelis
 The species distribution modeling results consist of the following figures and tables:


Table 22. Input parameters for species distribution modeling of Lycaeides melissa samuelis.

Number of predictors 32
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 3
Final SDM iteration number 2


Figure 44. Extent of the species range modeled for Lycaeides melissa samuelis. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 45. Correlation between SDM predictor variables for Lycaeides melissa samuelis.


Figure 46. Boxplots of model fit for each iteration of Lycaeides melissa samuelis distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 23. Diagnostic statistics of the training data used in SDM iteration #2 for Lycaeides melissa samuelis.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 437.0000 437.0000 437.0000 437.0000 437.0000 437.00000 0.000000
Regularized training gain 2.1456 2.1028 2.1428 2.0984 2.1371 2.12534 0.022844
Unregularized training gain 2.2867 2.2427 2.2935 2.2512 2.2874 2.27230 0.023485
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9614 0.9598 0.9612 0.9600 0.9617 0.96082 0.000861
Number of background points 10437.0000 10437.0000 10437.0000 10437.0000 10437.0000 10437.00000 0.000000
Bioclim 03 contribution 12.6731 11.7635 12.2901 12.4987 12.0450 12.25408 0.360935
Bioclim 08 contribution 3.9398 3.9605 4.8659 4.3553 4.6065 4.34560 0.403686
Bioclim 13 contribution 7.9622 8.2222 7.6018 8.5993 7.1175 7.90060 0.569634
Bioclim 15 contribution 17.2558 17.2404 16.7304 17.7439 17.5796 17.31002 0.388803
Solar MAR contribution 6.3224 6.4639 6.8737 6.6805 6.3526 6.53862 0.234172
Solar OCT contribution 51.8467 52.3495 51.6380 50.1223 52.2988 51.65106 0.905944
Bioclim 03 permutation importance 22.9672 19.4589 19.1587 22.7873 23.9274 21.65990 2.192146
Bioclim 08 permutation importance 2.1299 1.7362 2.3897 2.3814 2.7276 2.27296 0.367649
Bioclim 13 permutation importance 12.9875 12.9077 11.1657 13.6872 12.5514 12.65990 0.931192
Bioclim 15 permutation importance 4.8413 4.0114 4.3679 5.1806 4.2302 4.52628 0.475716
Solar MAR permutation importance 13.8101 14.3228 14.7914 16.0334 15.9142 14.97438 0.977033
Solar OCT permutation importance 43.2640 47.5631 48.1265 39.9301 40.6493 43.90660 3.808315
Entropy 7.1093 7.1530 7.1121 7.1555 7.1187 7.12972 0.022669
Prevalence average probability of presence over background sites 0.0672 0.0702 0.0671 0.0704 0.0675 0.06848 0.001669
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0146 0.0145 0.0144 0.0144 0.0140 0.01438 0.000228
Fixed cumulative value 1 area 0.2699 0.2850 0.2804 0.2778 0.2826 0.27914 0.005811
Fixed cumulative value 1 training omission 0.0069 0.0046 0.0046 0.0069 0.0069 0.00598 0.001260
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0784 0.0786 0.0749 0.0854 0.0748 0.07842 0.004308
Fixed cumulative value 5 area 0.1446 0.1514 0.1517 0.1493 0.1519 0.14978 0.003077
Fixed cumulative value 5 training omission 0.0366 0.0343 0.0343 0.0343 0.0320 0.03430 0.001626
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1738 0.1729 0.1563 0.1781 0.1627 0.16876 0.008969
Fixed cumulative value 10 area 0.0988 0.1030 0.1008 0.1044 0.1012 0.10164 0.002147
Fixed cumulative value 10 training omission 0.0641 0.0664 0.0641 0.0664 0.0686 0.06592 0.001889
Minimum training presence cumulative threshold 0.0465 0.0578 0.0550 0.0973 0.0818 0.06768 0.021117
Minimum training presence Cloglog threshold 0.0009 0.0011 0.0010 0.0017 0.0014 0.00122 0.000327
Minimum training presence area 0.4870 0.4949 0.4955 0.4558 0.4768 0.48200 0.016486
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 18.8231 17.2822 17.8544 17.8848 17.8019 17.92928 0.557099
X10 percentile training presence Cloglog threshold 0.3815 0.3638 0.3644 0.3695 0.3686 0.36956 0.007129
X10 percentile training presence area 0.0653 0.0724 0.0673 0.0713 0.0689 0.06904 0.002891
X10 percentile training presence training omission 0.0984 0.0984 0.0984 0.0984 0.0984 0.09840 0.000000
Equal training sensitivity and specificity cumulative threshold 14.6561 14.4018 14.4709 15.1887 14.7213 14.68776 0.308978
Equal training sensitivity and specificity Cloglog threshold 0.2905 0.2816 0.2664 0.2933 0.2902 0.28440 0.010976
Equal training sensitivity and specificity area 0.0772 0.0816 0.0778 0.0797 0.0781 0.07888 0.001780
Equal training sensitivity and specificity training omission 0.0778 0.0824 0.0778 0.0801 0.0778 0.07918 0.002057
Maximum training sensitivity plus specificity cumulative threshold 15.3555 14.4018 15.8409 14.8946 14.7213 15.04282 0.563682
Maximum training sensitivity plus specificity Cloglog threshold 0.3076 0.2816 0.3056 0.2860 0.2902 0.29420 0.011742
Maximum training sensitivity plus specificity area 0.0748 0.0816 0.0730 0.0808 0.0781 0.07766 0.003724
Maximum training sensitivity plus specificity training omission 0.0778 0.0801 0.0801 0.0755 0.0778 0.07826 0.001924
Balance training omission predicted area and threshold value cumulative threshold 1.4862 1.3510 1.8675 1.6217 1.5032 1.56592 0.193998
Balance training omission predicted area and threshold value Cloglog threshold 0.0215 0.0192 0.0266 0.0236 0.0210 0.02238 0.002832
Balance training omission predicted area and threshold value area 0.2383 0.2594 0.2294 0.2374 0.2482 0.24254 0.011547
Balance training omission predicted area and threshold value training omission 0.0069 0.0046 0.0114 0.0069 0.0069 0.00734 0.002479
Equate entropy of thresholded and original distributions cumulative threshold 7.4836 7.5368 7.9199 7.4914 7.8712 7.66058 0.216144
Equate entropy of thresholded and original distributions Cloglog threshold 0.1257 0.1227 0.1188 0.1337 0.1195 0.12408 0.006040
Equate entropy of thresholded and original distributions area 0.1172 0.1224 0.1175 0.1227 0.1182 0.11960 0.002719
Equate entropy of thresholded and original distributions training omission 0.0481 0.0503 0.0458 0.0503 0.0412 0.04714 0.003807



Figure 47. Sampling of continuous predictor variables retained in the best-fit Lycaeides melissa samuelis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 48. Sampling of discrete predictor variables retained in the best-fit Lycaeides melissa samuelis distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).

Figure 49. Percent contribution of each variable to best-fit species distribution models for Lycaeides melissa samuelis. Values sum to 1.0.
Table 24. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Lycaeides melissa samuelis, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.959956 0.958142 0.958097 0.960752 0.959336 0.959257 0.001087


Figure 50. Final mean SDM output for Lycaeides melissa samuelis.


2.2.8 Species Distribution Modeling Results for Neonympha mitchellii mitchellii
 The species distribution modeling results consist of the following figures and tables:

Table 25. Input parameters for species distribution modeling of Neonympha mitchellii mitchellii.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 4
Final SDM iteration number 3




Figure 51. Extent of the species range modeled for Neonympha mitchellii mitchellii. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 52. Correlation between SDM predictor variables for Neonympha mitchellii mitchellii.


Figure 53. Boxplots of model fit for each iteration of Neonympha mitchellii mitchellii distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 26. Diagnostic statistics of the training data used in SDM iteration #3 for Neonympha mitchellii mitchellii.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 54.0000 54.0000 54.0000 54.0000 54.0000 54.00000 0.000000
Regularized training gain 1.5751 1.5979 1.5616 1.6768 1.5867 1.59962 0.045203
Unregularized training gain 2.5526 2.6164 2.5270 2.6868 2.5795 2.59246 0.062280
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9795 0.9811 0.9797 0.9831 0.9809 0.98086 0.001438
Number of background points 10054.0000 10054.0000 10054.0000 10054.0000 10054.0000 10054.00000 0.000000
Bioclim 02 contribution 4.4859 5.0808 7.7277 6.6580 6.5506 6.10060 1.304597
Bioclim 07 contribution 5.1648 6.7296 6.7189 4.7950 8.3689 6.35544 1.429923
Bioclim 08 contribution 21.5801 17.9874 20.0154 16.8943 22.6428 19.82400 2.399083
Bioclim 14 contribution 11.6193 11.0470 11.6516 10.9312 9.5419 10.95820 0.856209
Elevation contribution 10.1556 11.1528 9.2736 9.6775 9.3130 9.91450 0.777856
Solar SEP contribution 34.9417 35.5125 34.4613 38.8091 33.2070 35.38632 2.093689
USGS_LULC contribution 12.0526 12.4900 10.1515 12.2348 10.3757 11.46092 1.106827
Bioclim 02 permutation importance 8.7765 12.6491 5.8203 8.3262 9.6957 9.05356 2.469820
Bioclim 07 permutation importance 9.1677 13.4480 9.7995 5.8807 12.9483 10.24884 3.081117
Bioclim 08 permutation importance 18.7134 19.0139 28.2465 21.4540 27.1235 22.91026 4.503965
Bioclim 14 permutation importance 4.4238 4.4113 6.8903 7.2922 5.6910 5.74172 1.344687
Elevation permutation importance 19.8469 17.3427 13.1991 19.8486 12.0982 16.46710 3.653470
Solar SEP permutation importance 31.2300 25.2650 26.7832 29.8114 27.2418 28.06628 2.409761
USGS_LULC permutation importance 7.8418 7.8701 9.2612 7.3870 5.2015 7.51232 1.470607
Entropy 7.6446 7.6176 7.6820 7.5566 7.6393 7.62802 0.046166
Prevalence average probability of presence over background sites 0.1187 0.1154 0.1228 0.1086 0.1181 0.11672 0.005255
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0178 0.0177 0.0191 0.0166 0.0182 0.01788 0.000904
Fixed cumulative value 1 area 0.5658 0.5588 0.5799 0.5604 0.5650 0.56598 0.008328
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0724 0.0679 0.0710 0.0633 0.0709 0.06910 0.003634
Fixed cumulative value 5 area 0.3557 0.3489 0.3655 0.3488 0.3553 0.35484 0.006826
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1292 0.1270 0.1292 0.1179 0.1294 0.12654 0.004929
Fixed cumulative value 10 area 0.2560 0.2476 0.2616 0.2447 0.2547 0.25292 0.006780
Fixed cumulative value 10 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Minimum training presence cumulative threshold 28.7228 26.6832 30.5513 30.4918 27.9033 28.87048 1.672967
Minimum training presence Cloglog threshold 0.3693 0.3487 0.4150 0.3904 0.3657 0.37782 0.025535
Minimum training presence area 0.1043 0.1082 0.0974 0.0880 0.1062 0.10082 0.008240
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 43.6113 48.6223 45.8221 49.8222 48.1993 47.21544 2.483629
X10 percentile training presence Cloglog threshold 0.5664 0.6491 0.6103 0.6503 0.6250 0.62022 0.034484
X10 percentile training presence area 0.0540 0.0415 0.0501 0.0367 0.0432 0.04510 0.006916
X10 percentile training presence training omission 0.0926 0.0926 0.0926 0.0926 0.0926 0.09260 0.000000
Equal training sensitivity and specificity cumulative threshold 40.3807 42.1299 43.5024 42.1420 42.8327 42.19754 1.163471
Equal training sensitivity and specificity Cloglog threshold 0.5218 0.5649 0.5751 0.5464 0.5572 0.55308 0.020400
Equal training sensitivity and specificity area 0.0626 0.0556 0.0556 0.0528 0.0556 0.05644 0.003651
Equal training sensitivity and specificity training omission 0.0556 0.0556 0.0556 0.0556 0.0556 0.05560 0.000000
Maximum training sensitivity plus specificity cumulative threshold 36.4006 35.5245 39.5715 37.8808 38.8445 37.64438 1.677115
Maximum training sensitivity plus specificity Cloglog threshold 0.4694 0.4709 0.5254 0.4910 0.5069 0.49272 0.023937
Maximum training sensitivity plus specificity area 0.0747 0.0740 0.0662 0.0640 0.0665 0.06908 0.004913
Maximum training sensitivity plus specificity training omission 0.0185 0.0185 0.0185 0.0185 0.0185 0.01850 0.000000
Balance training omission predicted area and threshold value cumulative threshold 5.5906 5.8095 5.9125 5.9538 5.6340 5.78008 0.162651
Balance training omission predicted area and threshold value Cloglog threshold 0.0797 0.0777 0.0827 0.0733 0.0794 0.07856 0.003448
Balance training omission predicted area and threshold value area 0.3403 0.3274 0.3410 0.3233 0.3384 0.33408 0.008156
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 13.7283 13.5291 13.4002 14.3444 13.7369 13.74778 0.362314
Equate entropy of thresholded and original distributions Cloglog threshold 0.1694 0.1674 0.1671 0.1672 0.1695 0.16812 0.001219
Equate entropy of thresholded and original distributions area 0.2078 0.2022 0.2157 0.1903 0.2067 0.20454 0.009329
Equate entropy of thresholded and original distributions training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000



Figure 54. Sampling of continuous predictor variables retained in the best-fit Neonympha mitchellii mitchellii distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 55. Sampling of discrete predictor variables retained in the best-fit Neonympha mitchellii mitchellii distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 56. Percent contribution of each variable to best-fit species distribution models for Neonympha mitchellii mitchellii. Values sum to 1.0.
Table 27. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Neonympha mitchellii mitchellii, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.968333 0.973 0.973667 0.974333 0.972 0.972267 0.001117


Figure 57. Final mean SDM output for Neonympha mitchellii mitchellii.


2.2.9 Species Distribution Modeling Results for Pedicularis furbishiae
 The species distribution modeling results consist of the following figures and tables:

Table 28. Input parameters for species distribution modeling of Pedicularis furbishiae.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 4
Final SDM iteration number 3



Figure 58. Extent of the species range modeled for Pedicularis furbishiae. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 59. Correlation between SDM predictor variables for Pedicularis furbishiae.


Figure 60. Boxplots of model fit for each iteration of Pedicularis furbishiae distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 29. Diagnostic statistics of the training data used in SDM iteration #3 for Pedicularis furbishiae.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 37.0000 37.0000 37.0000 37.0000 37.0000 37.00000 0.000000
Regularized training gain 3.9154 3.8182 3.9576 3.9266 3.9027 3.90410 0.052146
Unregularized training gain 4.6747 4.5469 4.7330 4.6593 4.6551 4.65380 0.067396
Iterations 500.0000 500.0000 500.0000 500.0000 500.0000 500.00000 0.000000
Training AUC 0.9975 0.9970 0.9976 0.9972 0.9973 0.99732 0.000239
Number of background points 10037.0000 10037.0000 10037.0000 10037.0000 10037.0000 10037.00000 0.000000
Bioclim 03 contribution 38.7168 38.4246 39.6503 37.9631 37.8007 38.51110 0.733577
Bioclim 08 contribution 5.2683 6.9337 5.1715 5.0426 6.3428 5.75178 0.839591
Bioclim 12 contribution 25.2815 28.4996 26.5655 28.1025 27.7879 27.24740 1.315398
Elevation contribution 7.4124 7.2365 6.7517 6.8298 7.5038 7.14684 0.340085
Solar APR contribution 9.8783 7.0080 8.5466 9.6225 6.3273 8.27654 1.569945
Solar FEB contribution 8.9270 7.8673 8.5454 7.7156 9.2638 8.46382 0.666489
USGS_LULC contribution 4.5156 4.0303 4.7690 4.7239 4.9737 4.60250 0.358892
Bioclim 03 permutation importance 27.0399 33.5996 25.5100 26.2156 33.0559 29.08420 3.916190
Bioclim 08 permutation importance 2.1973 3.2323 4.7594 0.8726 5.5381 3.31994 1.887442
Bioclim 12 permutation importance 35.5109 31.3718 41.4845 35.2217 23.7286 33.46350 6.533817
Elevation permutation importance 20.2944 18.9433 10.4021 23.9828 24.5203 19.62858 5.677346
Solar APR permutation importance 10.5660 9.2995 14.1041 10.2721 6.2464 10.09762 2.818271
Solar FEB permutation importance 3.9712 3.4270 3.4149 3.1870 6.3992 4.07986 1.328226
USGS_LULC permutation importance 0.4202 0.1264 0.3250 0.2482 0.5116 0.32628 0.149344
Entropy 5.3075 5.3994 5.2713 5.2915 5.3316 5.32026 0.049444
Prevalence average probability of presence over background sites 0.0109 0.0119 0.0105 0.0106 0.0111 0.01100 0.000557
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0045 0.0050 0.0045 0.0044 0.0049 0.00466 0.000270
Fixed cumulative value 1 area 0.1057 0.1070 0.1004 0.1065 0.1054 0.10500 0.002649
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0327 0.0349 0.0333 0.0309 0.0340 0.03316 0.001506
Fixed cumulative value 5 area 0.0422 0.0436 0.0403 0.0419 0.0429 0.04218 0.001240
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.0893 0.1032 0.0916 0.0848 0.0878 0.09134 0.007074
Fixed cumulative value 10 area 0.0241 0.0261 0.0230 0.0232 0.0247 0.02422 0.001256
Fixed cumulative value 10 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Minimum training presence cumulative threshold 35.9764 23.1208 32.8803 22.8267 29.3250 28.82584 5.838567
Minimum training presence Cloglog threshold 0.5409 0.2851 0.5177 0.3375 0.4373 0.42370 0.111127
Minimum training presence area 0.0057 0.0112 0.0060 0.0097 0.0074 0.00800 0.002386
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 39.1479 37.1916 39.5831 37.8425 37.9869 38.35040 0.985960
X10 percentile training presence Cloglog threshold 0.6275 0.5964 0.6698 0.6628 0.6363 0.63856 0.029447
X10 percentile training presence area 0.0050 0.0057 0.0047 0.0049 0.0052 0.00510 0.000381
X10 percentile training presence training omission 0.0811 0.0811 0.0811 0.0811 0.0811 0.08110 0.000000
Equal training sensitivity and specificity cumulative threshold 35.9764 23.1208 32.8803 22.8267 29.3250 28.82584 5.838567
Equal training sensitivity and specificity Cloglog threshold 0.5409 0.2851 0.5177 0.3375 0.4373 0.42370 0.111127
Equal training sensitivity and specificity area 0.0057 0.0112 0.0060 0.0097 0.0074 0.00800 0.002386
Equal training sensitivity and specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Maximum training sensitivity plus specificity cumulative threshold 35.9764 23.1208 32.8803 22.8267 29.3250 28.82584 5.838567
Maximum training sensitivity plus specificity Cloglog threshold 0.5409 0.2851 0.5177 0.3375 0.4373 0.42370 0.111127
Maximum training sensitivity plus specificity area 0.0057 0.0112 0.0060 0.0097 0.0074 0.00800 0.002386
Maximum training sensitivity plus specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Balance training omission predicted area and threshold value cumulative threshold 1.6947 1.6920 1.6321 1.7014 1.6545 1.67494 0.030144
Balance training omission predicted area and threshold value Cloglog threshold 0.0080 0.0087 0.0077 0.0078 0.0082 0.00808 0.000396
Balance training omission predicted area and threshold value area 0.0824 0.0844 0.0799 0.0834 0.0841 0.08284 0.001815
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 12.3096 12.3159 12.1048 11.7760 12.1674 12.13474 0.220257
Equate entropy of thresholded and original distributions Cloglog threshold 0.1239 0.1316 0.1224 0.1070 0.1153 0.12004 0.009309
Equate entropy of thresholded and original distributions area 0.0200 0.0220 0.0193 0.0197 0.0205 0.02030 0.001046
Equate entropy of thresholded and original distributions training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000



Figure 61. Sampling of continuous predictor variables retained in the best-fit Pedicularis furbishiae distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 62. Sampling of discrete predictor variables retained in the best-fit Pedicularis furbishiae distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 63. Percent contribution of each variable to best-fit species distribution models for Pedicularis furbishiae. Values sum to 1.0.
Table 30. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Pedicularis furbishiae, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.996667 0.995556 0.996111 0.998333 0.996111 0.996556 0.001058


Figure 64. Final mean SDM output for Pedicularis furbishiae.


2.2.10 Species Distribution Modeling Results for Tympanuchus cupido attwateri
 The species distribution modeling results consist of the following figures and tables:

Table 31. Input parameters for species distribution modeling of Tympanuchus cupido attwateri.

Number of predictors 33
Names of predictors Bioclim.01.tif, Bioclim.02.tif, Bioclim.03.tif, Bioclim.04.tif,
Bioclim.05.tif, Bioclim.06.tif, Bioclim.07.tif, Bioclim.08.tif,
Bioclim.09.tif, Bioclim.10.tif, Bioclim.11.tif, Bioclim.12.tif,
Bioclim.13.tif, Bioclim.14.tif, Bioclim.15.tif, Bioclim.16.tif,
Bioclim.17.tif, Bioclim.18.tif, Bioclim.19.tif, Elevation.tif,
Solar.APR.tif, Solar.AUG.tif, Solar.DEC.tif, Solar.FEB.tif,
Solar.JAN.tif, Solar.JUL.tif, Solar.JUN.tif, Solar.MAR.tif,
Solar.MAY.tif, Solar.NOV.tif, Solar.OCT.tif, Solar.SEP.tif,
USGS_LULC.tif
Predictor correlation threshold 0.67
Predictor contribution threshold 1.0
SDM threshold 0.2
Number of iterations conducted 6
Final SDM iteration number 5




Figure 65. Extent of the species range modeled for Tympanuchus cupido attwateri. Modeling extent is determined by buffering species location records in all directions by 3 degrees latitude/longitude.

Figure 66. Correlation between SDM predictor variables for Tympanuchus cupido attwateri.


Figure 67. Boxplots of model fit for each iteration of Tympanuchus cupido attwateri distribution modeling. Statistics are calculated using 80% of species location records reserved for model training.

Table 32. Diagnostic statistics of the training data used in SDM iteration #5 for Tympanuchus cupido attwateri.
Model Output Realization 1 Realization 2 Realization 3 Realization 4 Realization 5 Mean Standard Deviation
Number of training samples 18.0000 18.0000 18.0000 18.0000 18.0000 18.00000 0.000000
Regularized training gain 2.4234 2.4055 2.4804 2.3710 2.4692 2.42990 0.045281
Unregularized training gain 3.0227 2.9741 3.0365 2.9800 3.0397 3.01060 0.031355
Iterations 240.0000 200.0000 280.0000 200.0000 340.0000 252.00000 59.329588
Training AUC 0.9847 0.9835 0.9841 0.9843 0.9841 0.98414 0.000434
Number of background points 10018.0000 10017.0000 10016.0000 10018.0000 10017.0000 10017.20000 0.836660
Bioclim 18 contribution 28.1712 25.4565 26.7546 27.3403 23.0314 26.15080 2.004633
Solar APR contribution 37.1342 40.1570 40.9931 36.9113 43.6438 39.76788 2.818317
USGS_LULC contribution 34.6945 34.3864 32.2523 35.7484 33.3248 34.08128 1.338456
Bioclim 18 permutation importance 7.6366 6.3329 3.4957 5.9680 2.8511 5.25686 2.013462
Solar APR permutation importance 83.8538 85.9677 91.9565 84.7369 90.6407 87.43112 3.639303
USGS_LULC permutation importance 8.5096 7.6994 4.5478 9.2951 6.5082 7.31202 1.857680
Entropy 6.7859 6.8043 6.7289 6.8396 6.7411 6.77996 0.045557
Prevalence average probability of presence over background sites 0.0507 0.0520 0.0480 0.0539 0.0485 0.05062 0.002451
Fixed cumulative value 1 cumulative threshold 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 0.000000
Fixed cumulative value 1 Cloglog threshold 0.0130 0.0146 0.0148 0.0139 0.0135 0.01396 0.000750
Fixed cumulative value 1 area 0.1952 0.1872 0.1801 0.1959 0.1858 0.18884 0.006682
Fixed cumulative value 1 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 5 cumulative threshold 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 0.000000
Fixed cumulative value 5 Cloglog threshold 0.0944 0.1013 0.0995 0.1049 0.0929 0.09860 0.004948
Fixed cumulative value 5 area 0.1084 0.1067 0.1017 0.1089 0.1042 0.10598 0.003016
Fixed cumulative value 5 training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Fixed cumulative value 10 cumulative threshold 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 0.000000
Fixed cumulative value 10 Cloglog threshold 0.1884 0.1957 0.1897 0.2056 0.1853 0.19294 0.008021
Fixed cumulative value 10 area 0.0783 0.0779 0.0739 0.0796 0.0751 0.07696 0.002370
Fixed cumulative value 10 training omission 0.0556 0.1111 0.0556 0.0556 0.1111 0.07780 0.030399
Minimum training presence cumulative threshold 8.2711 8.8995 8.0619 8.9391 8.4980 8.53392 0.384378
Minimum training presence Cloglog threshold 0.1550 0.1742 0.1551 0.1822 0.1562 0.16454 0.012795
Minimum training presence area 0.0864 0.0828 0.0824 0.0841 0.0818 0.08350 0.001828
Minimum training presence training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
X10 percentile training presence cumulative threshold 13.0607 9.2245 10.4669 10.9658 8.8979 10.52316 1.655762
X10 percentile training presence Cloglog threshold 0.2448 0.1802 0.1999 0.2201 0.1672 0.20244 0.031021
X10 percentile training presence area 0.0671 0.0812 0.0721 0.0759 0.0799 0.07524 0.005783
X10 percentile training presence training omission 0.0556 0.0556 0.0556 0.0556 0.0556 0.05560 0.000000
Equal training sensitivity and specificity cumulative threshold 13.0607 9.2245 10.4669 10.9658 8.8979 10.52316 1.655762
Equal training sensitivity and specificity Cloglog threshold 0.2448 0.1802 0.1999 0.2201 0.1672 0.20244 0.031021
Equal training sensitivity and specificity area 0.0671 0.0812 0.0721 0.0759 0.0799 0.07524 0.005783
Equal training sensitivity and specificity training omission 0.0556 0.0556 0.0556 0.0556 0.0556 0.05560 0.000000
Maximum training sensitivity plus specificity cumulative threshold 8.2711 8.8995 8.0619 8.9391 8.4980 8.53392 0.384378
Maximum training sensitivity plus specificity Cloglog threshold 0.1550 0.1742 0.1551 0.1822 0.1562 0.16454 0.012795
Maximum training sensitivity plus specificity area 0.0864 0.0828 0.0824 0.0841 0.0818 0.08350 0.001828
Maximum training sensitivity plus specificity training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Balance training omission predicted area and threshold value cumulative threshold 2.1135 2.0353 2.0579 2.1423 2.0387 2.07754 0.047868
Balance training omission predicted area and threshold value Cloglog threshold 0.0347 0.0353 0.0327 0.0364 0.0331 0.03444 0.001539
Balance training omission predicted area and threshold value area 0.1492 0.1469 0.1410 0.1483 0.1448 0.14604 0.003270
Balance training omission predicted area and threshold value training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
Equate entropy of thresholded and original distributions cumulative threshold 7.9162 7.5065 7.8639 7.2233 7.9860 7.69918 0.324069
Equate entropy of thresholded and original distributions Cloglog threshold 0.1491 0.1489 0.1503 0.1470 0.1498 0.14902 0.001260
Equate entropy of thresholded and original distributions area 0.0883 0.0899 0.0835 0.0932 0.0845 0.08788 0.003974
Equate entropy of thresholded and original distributions training omission 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000



Figure 68. Sampling of continuous predictor variables retained in the best-fit Tympanuchus cupido attwateri distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent (gray).


Figure 69. Sampling of discrete predictor variables retained in the best-fit Tympanuchus cupido attwateri distribution models. Distribution of each variable at points of species occurrence (green) are contrasted with points sampled across the full modeled extent.

Figure 70. Percent contribution of each variable to best-fit species distribution models for Tympanuchus cupido attwateri. Values sum to 1.0.
Table 33. Mean Area Under Curve (AUC) for five realizations of the best-fit SDM for Tympanuchus cupido attwateri, calculated using 20% of species location records reserved for final evaluation.
V1 V2 V3 V4 V5 mean sd
0.97375 0.97375 0.975 0.97375 0.9725 0.97375 0.001021


Figure 71. Final mean SDM output for Tympanuchus cupido attwateri.


3. Co-Occurrence Modeling

3.1 Co-Occurrence Modeling Methods
 APCOAT calculates probabilisic co-occurrence by multiplying probabilistic pesticide use footprints and SDM rasters. The resulting co-occurrence raster is then averaged over the entire species range and within HUC8 boundaries.

3.2 Co-Occurrence Modeling Results

  1. Aphelocoma coerulescens and Atrazine Applications on Corn
  2. Bombus affinis and Atrazine Applications on Corn
  3. Bufo houstonensis and Atrazine Applications on Corn
  4. Chamaesyce garberi and Atrazine Applications on Corn
  5. Cicindela puritana and Atrazine Applications on Corn
  6. Eurycea tonkawae and Atrazine Applications on Corn
  7. Lycaeides melissa samuelis and Atrazine Applications on Corn
  8. Neonympha mitchellii mitchellii and Atrazine Applications on Corn
  9. Pedicularis furbishiae and Atrazine Applications on Corn
  10. Tympanuchus cupido attwateri and Atrazine Applications on Corn


3.2.1 Co-Occurrence Modeling Results for Aphelocoma coerulescens and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure:

Table 34. Statistics of probabilistic co-occurrence between the range of Aphelocoma coerulescens and atrazine applications on corn.
Average co-occurrence for species range 2.77e-02%
Number of HUC8 polygons included in assessment 69
Maximum average HUC8 co-occurrence 5.91e-01%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 72. Map showing probabilistic co-occurrence between the range of Aphelocoma coerulescens and atrazine applications on corn, summarized at the HUC8 scale.



3.2.2 Co-Occurrence Modeling Results for Bombus affinis and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure:

Table 35. Statistics of probabilistic co-occurrence between the range of Bombus affinis and atrazine applications on corn.
Average co-occurrence for species range 1.76e+00%
Number of HUC8 polygons included in assessment 1049
Maximum average HUC8 co-occurrence 7.35e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 73. Map showing probabilistic co-occurrence between the range of Bombus affinis and atrazine applications on corn, summarized at the HUC8 scale.


3.2.3 Co-Occurrence Modeling Results for Bufo houstonensis and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure:

Table 36. Statistics of probabilistic co-occurrence between the range of Bufo houstonensis and atrazine applications on corn.
Average co-occurrence for species range 4.64e-01%
Number of HUC8 polygons included in assessment 162
Maximum average HUC8 co-occurrence 2.45e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 74. Map showing probabilistic co-occurrence between the range of Bufo houstonensis and atrazine applications on corn, summarized at the HUC8 scale.



3.2.4 Co-Occurrence Modeling Results for Chamaesyce garberi and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 37. Statistics of probabilistic co-occurrence between the range of Chamaesyce garberi and atrazine applications on corn.
Average co-occurrence for species range 3.54e-05%
Number of HUC8 polygons included in assessment 22
Maximum average HUC8 co-occurrence 4.17e-05%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 75. Map showing probabilistic co-occurrence between the range of Chamaesyce garberi and atrazine applications on corn, summarized at the HUC8 scale.



3.2.5 Co-Occurrence Modeling Results for Cicindela puritana and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 38. Statistics of probabilistic co-occurrence between the range of Cicindela puritana and atrazine applications on corn.
Average co-occurrence for species range 7.96e-01%
Number of HUC8 polygons included in assessment 178
Maximum average HUC8 co-occurrence 2.73e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 76. Map showing probabilistic co-occurrence between the range of Cicindela puritana and atrazine applications on corn, summarized at the HUC8 scale.



3.2.6 Co-Occurrence Modeling Results for Eurycea tonkawae and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 39. Statistics of probabilistic co-occurrence between the range of Eurycea tonkawae and atrazine applications on corn.
Average co-occurrence for species range 5.86e-03%
Number of HUC8 polygons included in assessment 92
Maximum average HUC8 co-occurrence 4.74e-04%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 77. Map showing probabilistic co-occurrence between the range of Eurycea tonkawae and atrazine applications on corn, summarized at the HUC8 scale.



3.2.7 Co-Occurrence Modeling Results for Lycaeides melissa samuelis and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 40. Statistics of probabilistic co-occurrence between the range of Lycaeides melissa samuelis and atrazine applications on corn.
Average co-occurrence for species range 1.15e+00%
Number of HUC8 polygons included in assessment 536
Maximum average HUC8 co-occurrence 2.51e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 78. Map showing probabilistic co-occurrence between the range of Lycaeides melissa samuelis and atrazine applications on corn, summarized at the HUC8 scale.


3.2.8 Co-Occurrence Modeling Results for Neonympha mitchellii mitchellii and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 41. Statistics of probabilistic co-occurrence between the range of Neonympha mitchellii mitchellii and atrazine applications on corn.
Average co-occurrence for species range 1.51e+00%
Number of HUC8 polygons included in assessment 645
Maximum average HUC8 co-occurrence 8.24e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 79. Map showing probabilistic co-occurrence between the range of Neonympha mitchellii mitchellii and atrazine applications on corn, summarized at the HUC8 scale.



3.2.9 Co-Occurrence Modeling Results for Pedicularis furbishiae and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 42. Statistics of probabilistic co-occurrence between the range of Pedicularis furbishiae and atrazine applications on corn.
Average co-occurrence for species range 7.05e-04%
Number of HUC8 polygons included in assessment 32
Maximum average HUC8 co-occurrence 5.14e-04%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 80. Map showing probabilistic co-occurrence between the range of Pedicularis furbishiae and atrazine applications on corn, summarized at the HUC8 scale.



3.2.10 Co-Occurrence Modeling Results for Tympanuchus cupido attwateri and Atrazine Applications on Corn
 The co-occurrence modeling results consist of the following table and figure for each combination of crop and species modeled:

Table 43. Statistics of probabilistic co-occurrence between the range of Tympanuchus cupido attwateri and atrazine applications on corn.
Average co-occurrence for species range 6.72e-01%
Number of HUC8 polygons included in assessment 112
Maximum average HUC8 co-occurrence 1.61e+00%
Minimum average HUC8 co-occurrence 0.00e+00%


Figure 81. Map showing probabilistic co-occurrence between the range of Tympanuchus cupido attwateri and atrazine applications on corn, summarized at the HUC8 scale.



4. Summary

 In this assessment probabilistic spatial co-occurrence was calculated for applications of atrazine on corn and the distributions of 10 endangered species. The probability that corn was planted in a given location was calculated using six years of remotely sensed crop maps[6] and crop production surveys[8], and the probability that those locations were treated with atrazine was calculated using six years of estimates of atrazine usage[3]. The probability that a given location provided suitable habitat for the species of interest was calculated using maximum entropy methods to identify areas where environmental conditions (Table 44) were similar to the conditions at locations where the species have been observed. Environmental conditions were modeled using solar radiation, bioclimatic, and elevation datasets[10], and land use/land cover data[11]. Species location data were provided by NatureServe[13].

Table 44. Environmental variables used to predict species habitat suitability, ranked by importance.
Species Environmental Variable - Importance Average Species Spatial Co-Occurrence with Atrazine Applications
Florida scrub jay
(Aphelocoma coerulescens)
  • Temperature Seasonality (standard deviation x100) - 56.1%
  • Mean Temperature of Driest Quarter - 10.0%
  • Precipitation of Warmest Quarter - 9.6%
  • Solar Radiation, August - 9.3%
  • Solar Radiation, May - 7.7%
  • Elevation - 5.5%
  • Land Use/Land Cover - 1.7%
2.77e-02%
Rusty patched bumble bee
(Bombus affinis)
  • Solar Radiation, September - 67.6%
  • Land Use/Land Cover - 10.3%
  • Precipitation of Driest Quarter - 9.5%
  • Mean Diurnal Range (Mean of monthly (max temp - min temp)) - 7.3%
  • Elevation - 5.3%
1.76e+00%
Houston toad
(Bufo houstonensis)
  • Precipitation of Driest Quarter - 56.7%
  • Mean Temperature of Coldest Quarter - 36.1%
  • Land Use/Land Cover - 7.1%
4.64e-01%
Garber's spurge
(Chamaesyce garberi)
  • Mean Diurnal Range (Mean of monthly (max temp - min temp)) - 44.8%
  • Isothermality (Mean Diurnal Range/Temperature Annual Range) - 31.4%
  • Solar Radiation, June - 15.7%
  • Precipitation Seasonality (Coefficient of Variation) - 4.1%
  • Precipitation of Wettest Month - 0.3%
3.54e-05%
Puritan tiger beetle
(Cicindela puritana)
  • Elevation - 68.6%
  • Precipitation Seasonality (Coefficient of Variation) - 20.4%
  • Precipitation of Wettest Month - 7.9%
  • Land Use/Land Cover - 2.2%
  • Solar Radiation, October - 0.8%
7.96e-01%
Jollyville plateau salamander
(Eurycea tonkawae)
  • Elevation - 55.3
  • Mean Diurnal Range (Mean of monthly (max temp - min temp)) - 28.6%
  • Isothermality (Mean Diurnal Range/Temperature Annual Range) - 10.6%
  • Temperature Seasonality (standard deviation x100) - 5.0%
  • Land Use/Land Cover - 0.5%
5.86e-03%
Karner blue butterfly
(Lycaeides melissa samuelis)
  • Solar Radiation, October - 43.9%
  • Isothermality (Mean Diurnal Range/Temperature Annual Range) - 21.7%
  • Solar Radiation, March - 14.9%
  • Precipitation of Wettest Month - 12.7%
  • Precipitation Seasonality (Coefficient of Variation) - 4.5%
  • Mean Temperature of Wettest Quarter - 2.3%
1.15e+00%
Mithcell's satyr
(Neonympha mitchellii mitchellii)
  • Solar Radiation, September - 28.1%
  • Mean Temperature of Wettest Quarter - 22.9%
  • Elevation - 16.5%
  • Temperature Annual Range - 10.2%
  • Mean Diurnal Range (Mean of monthly (max temp - min temp)) - 9.1%
  • Land Use/Land Cover - 7.5%
  • Precipitation of Driest Month - 5.7%
1.51e+00%
Furbish's lousewort
(Pedicularis furbishiae)
  • Annual Precipitation - 33.5%
  • Isothermality (Mean Diurnal Range/Temperature Annual Range) - 29.1%
  • Elevation - 19.6%
  • Solar Radiation, April - 10.1%
  • Solar Radiation, February - 4.1%
  • Mean Temperature of Wettest Quarter - 3.3%
  • Land Use/Land Cover - 0.3%
7.05e-04%
Attwater's prairie chicken
(Tympanuchus cupido attwateri)
  • Solar Radiation, April - 87.4%
  • Land Use/Land Cover - 7.3%
  • Precipitation of Warmest Quarter - 5.3%
6.72e-01%


5. References


1. Dunne, J., Richardson, L., Rathjens, H., Winchell, M. (2022). Automated Probabilistic Co-Occurrence Assessment Tool. Stone Environmental Inc., Montpelier, Vermont. https://www.stone-env.com/APCOAT

2. Budreski, K., Winchell, M., Padilla, L., Bang, J., & Brain, R. A. (2016). A probabilistic approach for estimating the spatial extent of pesticide agricultural use sites and potential co-occurrence with listed species for use in ecological risk assessments. Integrated Environmental Assessment and Management, 12(2), 315-327. https://doi.org/10.1002/ieam.1677

3. Wieben, C.M.,(2019). Estimated Annual Agricultural Pesticide Use by Major Crop or Crop Group for States of the Conterminous United States, 1992-2017 (ver. 2.0, May 2020): U.S. Geological Survey data release, https://doi.org/10.5066/P9HHG3CT

4. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E. (2017). Opening the black box: an open-source release of Maxent. Ecography. 40(7):887-893. https://doi.org/10.1111/ecog.03049

5. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

6. United States Department of Agriculture, National Agricultural Statistics Service. (2019). Cropland data layer. https://nassgeodata.gmu.edu/CropScape/

7. United States Department of Agriculture, National Agricultural Statistics Service. (2020). Cropland Data Layer - Metadata. https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php

8. USDA - National Agricultural Statistics Service - Census of Agriculture. (2021). https://www.nass.usda.gov/AgCensus/

9. Syngenta Crop Protection LLC. (2013). AAtrex4L: Product Label. Greensboro, North Carolina

10. Fick, S.E., Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37(12):4302-4315. https://doi.org/10.1002/joc.5086. Data retrieved from https://www.worldclim.org on April 2021.

11. Brown, J. F., Loveland, T. R., Merchant, J. W., Reed, B. C., & Ohlen, D. O. (1993). Using multisource data in global land-cover characterization: Concepts, requirements, and methods. Photogrammetric Engineering and Remote Sensing, 59(6), 977-987. https://pubs.er.usgs.gov/publication/70187631

12. Richardson, L., Dunne, J., Feken, M., Brain, R., Ghebremichael, L., & Winchell, M. (2021). Probabilistic co-occurrence assessment for suites of listed species. Integrated environmental assessment and management. https://doi.org/10.1002/ieam.4542

13. NatureServe. (2002). Element occurrence data standard. http://downloads.natureserve.org/conservation_tools/element_occurence_data_standard.pdf